
1995 Broadway, 17th Floor
New York, NY 10023–5882
tel +1–212–580–0800
fax +1–212–580–0898
www.softwarefreedom.org

A Practical Guide to GPL Compliance

Bradley M. Kuhn

Aaron Williamson

Karen M. Sandler

August 26, 2008

Copyright c© 2008, Software Freedom Law Center. Licensed CC-BY-SA 3.0 unported.

1 Executive Summary

This is a guide to effective compliance with the GNU General Public License (GPL) and related licenses.
In accordance with the Software Freedom Law Center’s (SFLC’s) philosophy of assisting the community
with GPL compliance cooperatively, this guide focuses on avoiding compliance actions and minimizing the
negative impact when enforcement actions occur. It introduces and explains basic legal concepts related to
the GPL and its enforcement by copyright holders. It also outlines business practices and methods that
lead to better GPL compliance. Finally, it recommends proper post-violation responses to the concerns of
copyright holders.

2 Background

Early GPL enforcement efforts began soon after the GPL was written by Richard Stallman in 1989, and
consisted of informal community efforts, often in public Usenet discussions.1 Over the next decade, the
Free Software Foundation (FSF), which holds copyrights in many GNU programs, was the only visible
entity actively enforcing its GPL’d copyrights on behalf of the community of Free/Libre and Open Source
Software (FOSS) developers. FSF’s enforcement was generally a private process; the FSF contacted violators
confidentially and helped them to comply with the license. Most violations were pursued this way until the
early 2000’s.

By that time, Linux-based systems had become very common, particularly in embedded devices such as
wireless routers. During this period, public ridicule of violators in the press and on Internet fora supplemented
ongoing private enforcement and increased pressure on businesses to comply. In 2003, the FSF formalized its
efforts into the GPL Compliance Lab, increased the volume of enforcement, and built community coalitions to

1One example is the public outcry over NeXT’s attempt to make the Objective-C front-end to GCC proprietary.

1

http://www.softwarefreedom.org
http://creativecommons.org/licenses/by-sa/3.0/us/legalcode

encourage copyright holders to together settle amicably with violators. Beginning in 2004, Harald Welte took
a more organized public enforcement approach and launched gpl-violations.org, a website and mailing
list for collecting reports of GPL violations. On the basis of these reports, Welte successfully pursued many
enforcements in Europe, including formal legal action.

In 2007, the SFLC filed the first U.S. copyright infringement lawsuit based on a violation of the GPL. While
the lawsuits filed by SFLC on behalf of its clients have been quite public, SFLC resolves the vast majority of
enforcement actions privately via cooperative communications with violators. As we have worked to bring
individual companies into compliance, we have encountered numerous violations resulting from preventable
problems such as inadequate attention to licensing of upstream software, misconceptions about the GPL’s
terms, and poor communication between software developers and their management. In this document, we
highlight these problems and describe best practices to encourage corporate users of FOSS to reevaluate
their approach to GPL’d software and avoid future violations.

SFLC continues to conduct GPL enforcement and compliance efforts for many of its clients who release their
software under the GPL, the GNU Lesser Public License (LGPL) and other copyleft licenses. In doing so,
we have found that most violations stem from a few common mistakes that can be, for the most part, easily
avoided. We hope to educate the community of commercial distributors, redistributors, and resellers on how
to avoid violations in the first place, and to respond adequately and appropriately when a violation occurs.

3 Best Practices to Avoid Common Violations

Unlike highly permissive FOSS licenses (such as the ISC license), which typically only require preservation of
copyright notices, the GPL places a number of important requirements upon licensees. These requirements
are carefully designed to uphold certain values and standards of the software freedom community. While the
GPL’s requirements may appear initially counter-intuitive to those more familiar with proprietary software
licenses, by comparison its terms are in fact clear and favorable to licensees. The terms of the GPL actually
simplify compliance when violations occur.

GPL violations are often caused or compounded by a failure to adopt sound practices for the incorporation
of GPL’d components into a company’s internal development environment. In this section, we introduce
some best practices for software tool selection, integration and distribution, inspired by and congruent with
FOSS methodologies. We suggest companies establish such practices before building a product based on
GPL’d software.2

3.1 Evaluate License Applicability

Political discussion about the GPL often centers around the “copyleft” requirements of the license. Indeed,
the license was designed primarily to embody this licensing feature. Most companies adding non-trivial fea-
tures (beyond mere porting and bug-fixing) to GPL’d software, and thereby implicating these requirements,
are already well aware of their more complex obligations under the license.3

However, in our experience with GPL enforcement, few redistributors’ compliance challenges relate directly to
the copyleft provisions; this is doubly true for most embedders. Instead, the distributions of GPL’d systems
that we encounter typically consist of a full operating system including components under the GPL (e.g.,
Linux, BusyBox) and components under the LGPL (e.g., the GNU C Library). Sometimes, these programs

2This document addresses compliance with GPLv2, GPLv3, LGPLv2, and LGPLv3. Advice on avoiding the most common
errors differs little for compliance with these four licenses. § 7.1 discusses the key differences between GPL and LGPL compliance.

3There has been much legal discussion regarding copyleft and derivative works. In practical reality, this issue is not relevant
to the vast majority of companies distributing GPL’d software.

2

have been patched or slightly improved by direct modification of their sources, resulting unequivocally in
a derivative work. Alongside these programs, companies often distribute fully independent, proprietary
programs, developed from scratch, which are designed to run on the FOSS operating system but do not
combine with, link to, modify, or otherwise derive from the GPL’d components.4 In the latter case, where
the work is unquestionably a separate work of creative expression, no derivative work has been created. The
tiny minority of situations which lie outside these two categories, and thus involve close questions about
derivative works, require a highly fact-dependent analysis and cannot be addressed in a general-purpose
document.

Most companies accused of violations, however, lack a basic understanding of how to comply even in the
straightforward scenario. This document provides that fundamental and generally applicable prerequisite
knowledge. For answers to rarer and more complicated legal questions, such as whether your software is a
derivative work of some copylefted software, consult with an attorney.5

For this discussion, we will assume that you have already identified the “work” covered by the license, and
that any components not under the GPL (e.g., applications written entirely by your developers that merely
happen to run on a Linux-based operating system) distributed in conjunction with those works are separate
works within the meaning of copyright law. In such a case, the GPL requires you to provide complete and
corresponding source for the GPL’d components and your modifications thereto, but not for independent
proprietary applications. The procedures described in this document address this typical scenario.

3.2 Monitor Software Acquisition

Software engineers should have the freedom to innovate and import useful software components to improve
your product. However, along with that freedom should come rules and reporting procedures to make sure
that you are aware of what software is being tested or included with your product.

The companies we contact about GPL violations often respond with: “We didn’t know there was GPL’d stuff
in there”. This answer indicates a failure in the software acquisition and procurement process. Integration
of third-party proprietary software typically requires a formal arrangement and management/legal oversight
before the developers incorporate the software. By contrast, your developers often obtain and integrate FOSS
without intervention. The ease of acquisition, however, does not mean the oversight is any less necessary.
Just as your legal and/or management team negotiates terms for inclusion of any proprietary software, they
should be involved in all decisions to bring FOSS into your product.

Simple, engineering-oriented rules help provide a stable foundation for FOSS integration. Ask your software
developers to send an email to a standard place describing each new FOSS component they add to the
system, and have them include a brief description of how they will incorporate it into the product. Make
sure they use a revision control system, and have store the upstream versions of all software in a “vendor
branch” or similar mechanism, whereby they can easily track and find the main version of the software and
local changes made.

Such procedures are best instituted at your project’s launch. Once a chaotic and poorly-sourced development
process has begun, the challenges of determining and cataloging the presence of GPL’d components is difficult.
If you are in that situation, we recommend the Fossology system, which analyzes a source-code base and
produces a list of FOSS licenses that may apply to the code. Fossology can help you build a catalog of the
sources you have already used to build your product. You can then expand that into a more structured
inventory and process.

4However, these programs do often combine with LGPL’d libraries. This is discussed in detail in § 7.1.
5If you would like more information on the application of derivative works doctrine to software, a detailed legal discussion

is presented in our colleague Dan Ravicher’s article, Software Derivative Work: A Circuit Dependent Determination.

3

http://fossology.org/

3.3 Track Your Changes and Releases

As we will explain in further detail below, the most important component to maintaining GPL compliance
is inclusion of the complete and corresponding source code in any distributions that you make of GPL’d
software. Knowing at all times what sources generated a given binary distribution is paramount.

In an unfortunately large number of our enforcement cases, the violating company’s engineering team had
difficulty reconstructing the precise sources for a given binary distributed by the company. Ensure that
your developers are using revision control systems properly. Have them mark or tag the full source tree
corresponding to builds distributed to customers. Finally, check that your developers store all parts of the
software development in the revision control system, including readmes, build scripts, engineers’ notes, and
documentation. Your developers will also benefit from a system that tracks the precise version of source
that corresponds to any deployed binary.

3.4 Avoid the “Build Guru”

Too many software projects rely on only one or a very few team members who know how to build and
assemble the final released product. Such knowledge centralization not only creates engineering redundancy
issues, but it also endangers GPL compliance, which requires you to provide build scripts.

Avoid relying on a “build guru”, a single developer who is the only one who knows how to produce your final
product. Make sure the build process is well defined. Train every developer on the build process for the final
binary distribution, including (in the case of embedded software) generating a final firmware image suitable
for distribution to the customer. Require developers to use revision control for build processes. Make a rule
that adding new components to the system without adequate build instructions (or better yet, scripts) is
unacceptable engineering practice.

4 Details of Compliant Distribution

In this section, we explain the specific requirements placed upon distributors of GPL’d software. Note that
this section refers heavily to specific provisions and language in GPLv2 and GPLv3. It may be helpful to
have a copy of each license open while reading this section.

4.1 Binary Distribution Permission

The various versions of the GPL are copyright licenses that grant permission to make certain uses of software
that are otherwise restricted by copyright law. This permission is conditioned upon compliance with the
GPL’s requirements.6 This section walks through the requirements (of both GPLv2 and GPLv3) that apply
when you distribute GPL’d programs in binary (i.e., executable or object code) form, which is typical for
embedded applications. Because a binary application derives from a program’s original sources, you need
permission from the copyright holder to distribute it. § 3 of GPLv2 and § 6 of GPLv3 contain the permissions
and conditions related to binary distributions of GPL’d programs.7

6For a full discussion of this concept, please see the chapter entitled “Common Copyright Questions” in SFLC’s publication,
A Legal Issues Primer for Open Source and Free Software Projects.

7These sections cannot be fully understood in isolation; read the entire license thoroughly before focusing on any particular
provision. However, once you have read and understood the entire license, look to these sections to guide compliance for binary
distributions.

4

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html#section3
http://www.fsf.org/licensing/licenses/gpl.html#section6

GPL’s binary distribution sections offer a choice of compliance methods, each of which we consider in turn.
Each option refers to the “Corresponding Source” code for the binary distribution, which includes the source
code from which the binary was produced. This abbreviated and simplified definition is sufficient for the
binary distribution discussion in this section, but you may wish to refer back to this section after reading
the thorough discussion of “Corresponding Source” that appears in § 4.2.

4.1.1 Option (a): Source Alongside Binary

GPLv2 § 3(a) and v3 § 6(a) embody the easiest option for providing source code: including Corresponding
Source with every binary distribution. While other options appear initially less onerous, this option invari-
ably minimizes potential compliance problems, because when you distribute Corresponding Source with the
binary, your GPL obligations are satisfied at the time of distribution. This is not true of other options, and
for this reason, we urge you to seriously consider this option. If you do not, you may extend the duration of
your obligations far beyond your last binary distribution.

Compliance under this option is straightforward. If you ship a product that includes binary copies of GPL’d
software (e.g., in firmware, or on a hard drive, CD, or other permanent storage medium), you can store the
Corresponding Source alongside the binaries. Alternatively, you can include the source on a CD or other
removable storage medium in the box containing the product.

GPLv2 refers to the various storage mechanisms as “medi[a] customarily used for software interchange”.
While the Internet has attained primacy as a means of software distribution where super-fast Internet
connections are available, GPLv2 was written at a time when downloading software was not practical (and
was often impossible). For much of the world, this condition has not changed since GPLv2’s publication,
and the Internet still cannot be considered “a medium customary for software interchange”. GPLv3 clarifies
this matter, requiring that source be “fixed on a durable physical medium customarily used for software
interchange”. This language affirms that option (a) requires binary redistributors to provide source on a
physical medium.

Please note that while selection of option (a) requires distribution on a physical medium, voluntary distri-
bution via the Internet is very useful. This is discussed in detail in § 4.1.2.

4.1.2 Option (b): The Offer

Many distributors prefer to ship only an offer for source with the binary distribution, rather than the
complete source package. This option has value when the cost of source distribution is a true per-unit cost.
For example, this option might be a good choice for embedded products with permanent storage too small
to fit the source, and which are not otherwise shipped with a CD but are shipped with a manual or other
printed material.

However, this option increases the duration of your obligations dramatically. An offer for source must be
good for three full years from your last binary distribution (under GPLv2), or your last binary or spare part
distribution (under GPLv3). Your source code request and provisioning system must be designed to last
much longer than your product life cycle.

In addition, if you are required to comply with the terms of GPLv2, you cannot use a network service to
provide the source code. For GPLv2, the source code offer is fulfilled only with physical media. This usually
means that you must continue to produce an up-to-date “source code CD” for years after the product’s
end-of-life.

Under GPLv2, it is acceptable and advisable for your offer for source code to include an Internet link for

5

downloadable source in addition to offering source on a physical medium. This practice enables those with
fast network connections to get the source more quickly, and typically decreases the number of physical media
fulfillment requests. (GPLv3 § 6(b) permits provision of source with a public network-accessible distribution
only and no physical media. We discuss this in detail at the end of this section.)

The following is a suggested compliant offer for source under GPLv2 (and is also acceptable for GPLv3) that
you would include in your printed materials accompanying each binary distribution:

The software included in this product contains copyrighted software that is licensed under the
GPL. A copy of that license is included in this document on page X . You may obtain the
complete Corresponding Source code from us for a period of three years after our last shipment
of this product, which will be no earlier than 2011-08-01, by sending a money order or check for
$5 to:
GPL Compliance Division
Our Company
Any Town, US 99999

Please write “source for product Y ” in the memo line of your payment.

You may also find a copy of the source at http://www.example.com/sources/Y/.

This offer is valid to anyone in receipt of this information.

There are a few important details about this offer. First, it requires a copying fee. GPLv2 permits “a charge
no more than your cost of physically performing source distribution”. This fee must be reasonable. If your
cost of copying and mailing a CD is more than around $10, you should perhaps find a cheaper CD stock
and shipment method. It is simply not in your interest to try to overcharge the community. Abuse of this
provision in order to make a for-profit enterprise of source code provision will likely trigger enforcement
action.

Second, note that the last line makes the offer valid to anyone who requests the source. This is because
v2 § 3(b) requires that offers be “to give any third party” a copy of the Corresponding Source. GPLv3 has a
similar requirement, stating that an offer must be valid for “anyone who possesses the object code”. These
requirements indicated in v2 § 3(c) and v3 § 6(c) are so that non-commercial redistributors may pass these
offers along with their distributions. Therefore, the offers must be valid not only to your customers, but also
to anyone who received a copy of the binaries from them. Many distributors overlook this requirement and
assume that they are only required to fulfill a request from their direct customers.

The option to provide an offer for source rather than direct source distribution is a special benefit to
companies equipped to handle a fulfillment process. GPLv2 § 3(c) and GPLv3 § 6(c) avoid burdening
noncommercial, occasional redistributors with fulfillment request obligations by allowing them to pass along
the offer for source as they received it.

Note that commercial redistributors cannot avail themselves of the option (c) exception, and so while your
offer for source must be good to anyone who receives the offer (under v2) or the object code (under v3), it
cannot extinguish the obligations of anyone who commercially redistributes your product. The license terms
apply to anyone who distributes GPL’d software, regardless of whether they are the original distributor.
Take the example of Vendor V , who develops a software platform from GPL’d sources for use in embedded
devices. Manufacturer M contracts with V to install the software as firmware in M ’s device. V provides the
software to M , along with a compliant offer for source. In this situation, M cannot simply pass V ’s offer for
source along to its customers. M also distributes the GPL’d software commercially, so M too must comply
with the GPL and provide source (or M ’s own offer for source) to M ’s customers.

This situation illustrates that the offer for source is often a poor choice for products that your customers
will likely redistribute. If you include the source itself with the products, then your distribution to your

6

customers is compliant, and their (unmodified) distribution to their customers is likewise compliant, because
both include source. If you include only an offer for source, your distribution is compliant but your customer’s
distribution does not “inherit” that compliance, because they have not made their own offer to accompany
their distribution.

The terms related to the offer for source are quite different if you distribute under GPLv3. Under v3, you
may make source available only over a network server, as long as it is available to the general public and
remains active for three years from the last distribution of your product or related spare part. Accordingly,
you may satisfy your fulfillment obligations via Internet-only distribution. This makes the “offer for source”
option less troublesome for v3-only distributions, easing compliance for commercial redistributors. However,
before you switch to a purely Internet-based fulfillment process, you must first confirm that you can actually
distribute all of the software under GPLv3. Some programs are indeed licensed under “GPLv2, or any later

version” (often abbreviated “GPLv2-or-later”). Such licensing gives you the option to redistribute under
GPLv3. However, a few popular programs are only licensed under GPLv2 and not “or any later version”
(“GPLv2-only”). You cannot provide only Internet-based source request fulfillment for the latter programs.

If you determine that all GPL’d works in your whole product allow upgrade to GPLv3 (or were already
GPLv3’d to start), your offer for source may be as simple as this:

The software included in this product contains copyrighted software that is licensed under the
GPLv3. A copy of that license is included in this document on page X . You may obtain the
complete Corresponding Source code from us for a period of three years after our last shipment
of this product and/or spare parts therefor, which will be no earlier than 2011-08-01, on our
website at http://www.example.com/sources/productnum/.

Under both GPLv2 and GPLv3, source offers must be accompanied by a copy of the license itself, either
electronically or in print, with every distribution.

Finally, it is unacceptable to use option (b) merely because you do not have Corresponding Source ready.
We find that some companies chose this option because writing an offer is easy, but producing a source
distribution as an afterthought to a hasty development process is difficult. The offer for source does not
exist as a stop-gap solution for companies rushing to market with an out-of-compliance product. If you
ship an offer for source with your product but cannot actually deliver immediately on that offer when your
customers receive it, you should expect an enforcement action.

4.1.3 Option (c): Noncommercial Offers

As discussed in the last section, GPLv2 § 3(c) and GPLv3 § 6(c) apply only to noncommercial use. These
options are not available to businesses distributing GPL’d software. Consequently, companies who redis-
tribute software packaged for them by an upstream vendor cannot merely pass along the offer they received
from the vendor; they must provide their own offer or corresponding source to their distributees. We talk in
detail about upstream software providers in § 7.2.

4.1.4 Option 6(d) in GPLv3: Internet Distribution

Under GPLv2, your formal provisioning options for Corresponding Source ended with § 3(c). But even under
GPLv2, pure Internet source distribution was a common practice and generally considered to be compliant.
GPLv2 mentions Internet-only distribution almost as aside in the language, in text at the end of the section
after the three provisioning options are listed. To quote that part of GPLv2 § 3:

7

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

When that was written in 1991, Internet distribution of software was the exception, not the rule. Some FTP
sites existed, but generally software was sent on magnetic tape or CDs. GPLv2 therefore mostly assumed
that binary distribution happened on some physical media. By contrast, GPLv3 § 6(d) explicitly gives an
option for this practice that the community has historically considered GPLv2-compliant.

Thus, you may fulfill your source-provision obligations by providing the source code in the same way and
from the same location. When exercising this option, you are not obligated to ensure that users download
the source when they download the binary, and you may use separate servers as needed to fulfill the requests
as long as you make the source as accessible as the binary. However, you must ensure that users can easily
find the source code at the time they download the binary. GPLv3 § 6(d) thus clarifies a point that has
caused confusion about source provision in v2. Indeed, many such important clarifications are included in
v3 which together provide a compelling reason for authors and redistributors alike to adopt GPLv3.

4.1.5 Option 6(e) in GPLv3: Software Torrents

Peer-to-peer file sharing arose well after GPLv2 was written, and does not easily fit any of the v2 source
provision options. GPLv3 § 6(e) addresses this issue, explicitly allowing for distribution of source and binary
together on a peer-to-peer file sharing network. If you distribute solely via peer-to-peer networks, you can
exercise this option. However, peer-to-peer source distribution cannot fulfill your source provision obligations
for non-peer-to-peer binary distributions. Finally, you should ensure that binaries and source are equally
seeded upon initial peer-to-peer distribution.

4.2 Preparing Corresponding Source

Most enforcement cases involve companies that have unfortunately not implemented procedures like our § 3
recommendations and have no source distribution arranged at all. These companies must work backwards
from a binary distribution to come into compliance. Our recommendations in § 3 are designed to make it
easy to construct a complete and Corresponding Source release from the outset. If you have followed those
principles in your development, you can meet the following requirements with ease. If you have not, you
may have substantial reconstruction work to do.

4.2.1 Assemble the Sources

For every binary that you produce, you should collect and maintain a copy of the sources from which it
was built. A large system, such as an embedded firmware, will probably contain many GPL’d and LGPL’d
components for which you will have to provide source. The binary distribution may also contain proprietary
components which are separate and independent works that are covered by neither the GPL nor LGPL.

The best way to separate out your sources is to have a subdirectory for each component in your system.
You can then easily mark some of them as required for your Corresponding Source releases. Collecting
subdirectories of GPL’d and LGPL’d components is the first step toward preparing your release.

8

4.2.2 Building the Sources

Few distributors, particularly of embedded systems, take care to read the actual definition of Corresponding
Source in the GPL. Consider carefully the definition, from GPLv3:

The “Corresponding Source” for a work in object code form means all the source code needed
to generate, install, and (for an executable work) run the object code and to modify the work,
including scripts to control those activities.

and the definition from GPLv2:

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control compilation
and installation of the executable.

Note that you must include “scripts used to control compilation and installation of the executable” and/or
anything “needed to generate, install, and (for an executable work) run the object code and to modify the
work, including scripts to control those activities”. These phrases are written to cover different types of
build environments and systems. Therefore, the details of what you need to provide with regard to scripts
and installation instructions vary depending on the software details. You must provide all information
necessary such that someone generally skilled with computer systems could produce a binary similar to the
one provided.

Take as an example an embedded wireless device. Usually, a company distributes a firmware, which includes
a binary copy of Linux8 and a filesystem. That filesystem contains various binary programs, including some
GPL’d binaries, alongside some proprietary binaries that are separate works (i.e., not derived from, nor
based on FOSS sources). Consider what, in this case, constitutes adequate “scripts to control compilation
and installation” or items “needed to generate, install and run” the GPL’d programs.

Most importantly, you must provide some sort of roadmap that allows technically sophisticated users to
build your software. This can be complicated in an embedded environment. If your developers use scripts to
control the entire compilation and installation procedure, then you can simply provide those scripts to users
along with the sources they act upon. Sometimes, however, scripts were never written (e.g., the information
on how to build the binaries is locked up in the mind of your “build guru”). In that case, we recommend
that you write out build instructions in a natural language as a detailed, step-by-step readme.

No matter what you offer, you need to give those who receive source a clear path from your sources to
binaries similar to the ones you ship. If you ship a firmware (kernel plus filesystem), and the filesystem
contains binaries of GPL’d programs, then you should provide whatever is necessary to enable a reasonably
skilled user to build any given GPL’d source program (and modified versions thereof), and replace the given
binary in your filesystem. If the kernel is Linux, then the users must have the instructions to do the same
with the kernel. The best way to achieve this is to make available to your users whatever scripts or process
your engineers would use to do the same.

These are the general details for how installation instructions work. Details about what differs when the
work is licensed under LGPL is discussed in § 7.1, and specific details that are unique to GPLv3’s installation
instructions are in § 7.3.

8“Linux” refers only to the kernel, not the larger system as a whole.

9

4.2.3 What About the Compiler?

The GPL contains no provision that requires distribution of the compiler used to build the software. While
companies are encouraged to make it as easy as possible for their users to build the sources, inclusion of the
compiler itself is not normally considered mandatory. The Corresponding Source definition – both in GPLv2
and GPLv3 – has not been typically read to include the compiler itself, but rather things like makefiles,
build scripts, and packaging scripts.

Nonetheless, in the interest of goodwill and the spirit of the GPL, most companies do provide the compiler
itself when they are able, particularly when the compiler is based on GCC or another FOSS compiler. If you
have a GCC-based system, it is your prerogative to redistribute that GCC version (binaries plus sources)
to your customers. We in the FOSS community encourage you to do this, since it often makes it easier for
users to exercise their software freedom. However, if you chose to take this recommendation, ensure that
your GCC distribution is itself compliant.

If you have used a proprietary, third-party compiler to build the software, then you probably cannot ship it to
your customers. We consider the name of the compiler, its exact version number, and where it can be acquired
as information that must be provided as part of the Corresponding Source. This information is essential
to anyone who wishes to produce a binary. It is not the intent of the GPL to require you to distribute
third-party software tools to your customer (provided the tools themselves are not based on the GPL’d
software shipped), but we do believe it requires that you give the user all the essential non-proprietary facts
that you had at your disposal to build the software. Therefore, if you choose not to distribute the compiler,
you should include a readme about where you got it, what version it was, and who to contact to acquire
it, regardless of whether your compiler is FOSS, proprietary, or internally developed.

4.3 Best Practices and Corresponding Source

§ 3 and § 4.2 above are closely related. If you follow the best practices outlined above, you will find that
preparing your Corresponding Source release is an easier task, perhaps even a trivial one.

Indeed, the enforcement process itself has historically been useful to software development teams. Develop-
ment on a deadline can lead organizations to cut corners in a way that negatively impacts its development
processes. We have frequently been told by violators that they experience difficulty when determining the
exact source for a binary in production (in some cases because their “build guru” quit during the release
cycle). When management rushes a development team to ship a release, they are less likely to keep release
sources tagged and build systems well documented.

We suggest that, if contacted about a violation, product builders use GPL enforcement as an opportunity
to improve their development practices. No developer would argue that their system is better for having a
mysterious build system and no source tracking. Address these issues by installing a revision system, telling
your developers to use it, and requiring your build guru to document his or her work!

5 When The Letter Comes

Unfortunately, many GPL violators ignore their obligations until they are contacted by a copyright holder or
the lawyer of a copyright holder. You should certainly contact your own lawyer if you have received a letter
alleging that you have infringed copyrights that were licensed to you under the GPL. This section outlines
a typical enforcement case and provides some guidelines for response. These discussions are generalizations
and do not all apply to every alleged violation.

10

5.1 Communication Is Key

GPL violations are typically only escalated when a company ignores the copyright holder’s initial commu-
nication or fails to work toward timely compliance. We urge accused violators to respond very promptly
to the initial request. As the process continues, follow up weekly with the copyright holders to make sure
everyone agrees on targets and deadlines for resolving the situation.

Ensure that any staff who might receive communications regarding alleged GPL violations understands how
to channel the communication appropriately within your organization. Often, initial contact is addressed
for general correspondence (e.g., by mail to corporate headquarters or by e-mail to general informational or
support-related addresses). Train the staff that processes such communications to escalate them to someone
with authority to take action. An unknowledgable response to such an inquiry (e.g., from a first-level
technical support person) can cause negotiations to fail prematurely.

Answer promptly by multiple means (paper letter, telephone call, and email), even if your response merely
notifies the sender that you are investigating the situation and will respond by a certain date. Do not let the
conversation lapse until the situation is fully resolved. Proactively follow up with synchronous communication
means to be sure communications sent by non-reliable means (such as email) were received.

Remember that the FOSS community generally values open communication and cooperation, and these
values extend to GPL enforcement. You will generally find that FOSS developers and their lawyers are
willing to have a reasonable dialogue and will work with you to resolve a violation once you open the
channels of communication in a friendly way.

5.2 Termination

Many redistributors overlook GPL’s termination provision (GPLv2 § 4 and GPLv3 § 8). Under v2, violators
forfeit their rights to redistribute and modify the GPL’d software until those rights are explicitly reinstated by
the copyright holder. In contrast, v3 allows violators to rapidly resolve some violations without consequence.

If you have redistributed an application under GPLv29, but have violated the terms of GPLv2, you must
request a reinstatement of rights from the copyright holders before making further distributions, or else cease
distribution and modification of the software forever. Different copyright holders condition reinstatement
upon different requirements, and these requirements can be (and often are) wholly independent of the GPL.
The terms of your reinstatement will depend upon what you negotiate with the copyright holder of the
GPL’d program.

Since your rights under GPLv2 terminate automatically upon your initial violation, all your subsequent

distributions are violations and infringements of copyright. Therefore, even if you resolve a violation on your
own, you must still seek a reinstatement of rights from the copyright holders whose licenses you violated, lest
you remain liable for infringement for even compliant distributions made subsequent to the initial violation.

GPLv3 is more lenient. If you have distributed only v3-licensed programs, you may be eligible under v3 § 8
for automatic reinstatement of rights. You are eligible for automatic reinstatement when:

• you correct the violation and are not contacted by a copyright holder about the violation within sixty

9This applies to all programs licensed to you under only GPLv2 (“GPLv2-only”). However, most so-called GPLv2 programs
are actually distributed with permission to redistribute under GPLv2 or any later version of the GPL (“GPLv2-or-later”). In
the latter cases, the redistributor can choose to redistribute under GPLv2, GPLv3, GPLv2-or-later or even GPLv3-or-later.
Where the redistributor has chosen v2 explicitly, the v2 termination provision will always apply. If the redistributor has chosen
v3, the v3 termination provision will always apply. If the redistributor has chosen GPLv2-or-later, then the redistributor may
want to narrow to GPLv3-only upon violation, to take advantage of the termination provisions in v3.

11

days after the correction, or

• you receive, from a copyright holder, your first-ever contact regarding a GPL violation, and you correct
that violation within thirty days of receipt of copyright holder’s notice.

In addition to these permanent reinstatements provided under v3, violators who voluntarily correct their
violation also receive provisional permission to continue distributing until they receive contact from the
copyright holder. If sixty days pass without contact, that reinstatement becomes permanent. Nonetheless,
you should be prepared to cease distribution during those initial sixty days should you receive a termination
notice from the copyright holder.

Given that much discussion of v3 has focused on its so-called more complicated requirements, it should be
noted that v3 is, in this regard, more favorable to violators than v2.

6 Standard Requests

As we noted above, different copyright holders have different requirements for reinstating a violator’s distri-
bution rights. Upon violation, you no longer have a license under the GPL. Copyright holders can therefore
set their own requirements outside the license before reinstatement of rights. We have collected below a list
of reinstatement demands that copyright holders often require.

• Compliance on all FOSS copyrights. Copyright holders of FOSS often want a company to demon-
strate compliance for all GPL’d software in a distribution, not just their own. A copyright holder may
refuse to reinstate your right to distribute one program unless and until you comply with the licenses
of all FOSS in your distribution.

• Notification to past recipients. Users to whom you previously distributed non-compliant software
should receive a communication (email, letter, bill insert, etc.) indicating the violation, describing
their rights under GPL, and informing them how to obtain a gratis source distribution. If a customer
list does not exist (such as in reseller situations), an alternative form of notice may be required (such
as a magazine advertisement).

• Appointment of a GPL Compliance Officer. The FOSS community values personal accountability
when things go wrong. Copyright holders often require that you name someone within the violating
company officially responsible for FOSS license compliance, and that this individual serve as the key
public contact for the community when compliance concerns arise.

• Periodic Compliance Reports. Many copyright holders wish to monitor future compliance for some
period of time after the violation. For some period, your company may be required to send regular
reports on how many distributions of binary and source have occurred.

These are just a few possible requirements for reinstatement. In the context of a GPL violation, and
particularly under v2’s termination provision, the copyright holder may have a range of requests in exchange
for reinstatement of rights. These software developers are talented professionals from whose work your
company has benefited. Indeed, you are unlikely to find a better value or more generous license terms for
similar software elsewhere. Treat the copyright holders with the same respect you treat your corporate
partners and collaborators.

12

7 Special Topics in Compliance

There are several other issues that are less common, but also relevant in a GPL compliance situation. To
those who face them, they tend to be of particular interest.

7.1 LGPL Compliance

GPL compliance and LGPL compliance mostly involve the same issues. As we discussed in § 3.1, questions
of modified versions of software are highly fact-dependant and cannot be easily addressed in any overview
document. The LGPL adds some additional complexity to the analysis. Namely, the various LGPL versions
permit proprietary licensing of certain types of modified versions. These issues are well beyond the scope of
this document, but as a rule of thumb, once you have determined (in accordance with LGPLv3) what part
of the work is the “Application” and what portions of the source are “Minimal Corresponding Source”, then
you can usually proceed to follow the GPL compliance rules that we discussed, replacing our discussion of
“Corresponding Source” with “Minimal Corresponding Source”.

LGPL also requires that you provide a mechanism to combine the Application with a modified version of
the library, and outlines some options for this. Also, the license of the whole work must permit “reverse
engineering for debugging such modifications” to the library. Therefore, you should take care that the EULA
used for the Application does not contradict this permission.

7.2 Upstream Providers

With ever-increasing frequency, software development (particularly for embedded devices) is outsourced to
third parties. If you rely on an upstream provider for your software, note that you cannot ignore your GPL

compliance requirements simply because someone else packaged the software that you distribute. If you
redistribute GPL’d software (which you do, whenever you ship a device with your upstream’s software in
it), you are bound by the terms of the GPL. No distribution (including redistribution) is permissible absent
adherence to the license terms.

Therefore, you should introduce a due diligence process into your software acquisition plans. This is much
like the software-oriented recommendations we make in § 3. Implementing practices to ensure that you are
aware of what software is in your devices can only improve your general business processes. You should ask
a clear list of questions of all your upstream providers and make sure the answers are complete and accurate.
The following are examples of questions you should ask:

• What are all the licenses that cover the software in this device?

• From which upstream vendors, be they companies or individuals, did you receive your software from
before distributing it to us?

• What are your GPL compliance procedures?

• If there is GPL’d software in your distribution, we will be redistributors of this GPL’d software. What
mechanisms do you have in place to aid us with compliance?

• If we follow your recommended compliance procedures, will you formally indemnify us in case we are
nonetheless found to be in violation of the GPL?

This last point is particularly important. Many GPL enforcements are escalated because of petty finger-
pointing between the distributor and its upstream. In our experience, agreements regarding GPL compliance

13

issues and procedures are rarely negotiated up front. However, when they are, violations are resolved much
more smoothly (at least from the point of view of the redistributor).

Consider the cost of potential violations in your acquisition process. Using FOSS allows software vendors to
reduce costs significantly, but be wary of vendors who have done so without regard for the licenses. If your
vendor’s costs seem “too good to be true,” you may ultimately bear the burden of the vendor’s inattention
to GPL compliance. Ask the right questions, demand an account of your vendors’ compliance procedures,
and seek indemnity from them.

7.3 User Products and Installation Information

GPLv3 requires you to provide “Installation Information” when v3 software is distributed in a “User Prod-
uct.” During the drafting of v3, the debate over this requirement was contentious. However, the provision
as it appears in the final license is reasonable and easy to understand.

If you put GPLv3’d software into a User Product (as defined by the license) and you have the ability to install
modified versions onto that device, you must provide information that makes it possible for the user to install
functioning, modified versions of the software. Note that if no one, including you, can install a modified
version, this provision does not apply. For example, if the software is burned onto an non-field-upgradable
ROM chip, and the only way that chip can be upgraded is by producing a new one via a hardware factory
process, then it is acceptable that the users cannot electronically upgrade the software themselves.

Furthermore, you are permitted to refuse support service, warranties, and software updates to a user who has
installed a modified version. You may even forbid network access to devices that behave out of specification
due to such modifications. Indeed, this permission fits clearly with usual industry practice. While it is
impossible to provide a device that is completely unmodifiable10, users are generally on notice that they risk
voiding their warranties and losing their update and support services when they make modifications.11

GPLv3 is in many ways better for distributors who seek some degree of device lock-down. Technical processes
are always found for subverting any lock-down; pursuing it is a losing battle regardless. With GPLv3, unlike
with GPLv2, the license gives you clear provisions that you can rely on when you are forced to cut off
support, service or warranty for a customer who has chosen to modify.

8 Conclusion

GPL compliance need not be an onerous process. Historically, struggles have been the result of poor de-
velopment methodologies and communications, rather than any unexpected application of the GPL’s source
code disclosure requirements.

Compliance is straightforward when the entirety of your enterprise is well-informed and well-coordinated.
The receptionists should know how to route a GPL source request or accusation of infringement. The
lawyers should know the basic provisions of FOSS licenses and your source disclosure requirements, and
should explain those details to the software developers. The software developers should use a version control
system that allows them to associate versions of source with distributed binaries, have a well-documented
build process that anyone skilled in the art can understand, and inform the lawyers when they bring in new

10Consider that the iPhone, a device designed primarily to restrict users’ freedom to modify it, was unlocked and modified
within 48 hours of its release.

11A popular t-shirt in the FOSS community reads: “I void warranties.”. Our community is well-known for modifying products
with full knowledge of the consequences. GPLv3’s “Installation Instructions” section merely confirms that reality, and makes
sure GPL rights can be fully exercised, even if users exercise those rights at their own peril.

14

software. Managers should build systems and procedures that keep everyone on target. With these practices
in place, any organization can comply with the GPL without serious effort, and receive the substantial
benefits of good citizenship in the FOSS community, and lots of great code ready-made for their products.

15

	Executive Summary
	Background
	Best Practices to Avoid Common Violations
	Evaluate License Applicability
	Monitor Software Acquisition
	Track Your Changes and Releases
	Avoid the ``Build Guru''

	Details of Compliant Distribution
	Binary Distribution Permission
	Option (a): Source Alongside Binary
	Option (b): The Offer
	Option (c): Noncommercial Offers
	Option 6(d) in GPLv3: Internet Distribution
	Option 6(e) in GPLv3: Software Torrents

	Preparing Corresponding Source
	Assemble the Sources
	Building the Sources
	What About the Compiler?

	Best Practices and Corresponding Source

	When The Letter Comes
	Communication Is Key
	Termination

	Standard Requests
	Special Topics in Compliance
	LGPL Compliance
	Upstream Providers
	User Products and Installation Information

	Conclusion

