f d Software Freedom 1995 Broadway, 17th Floor
ram New York, NY 10023 5882
Law Center tel +1-212-530-0800
fax +1-212-580-0898

www.softwarefreedom.org

A Legal Issues Primer for
Open Source and Free Software Projects

Richard Fontana
Bradley M. Kuhn
Eben Moglen
Matthew Norwood
Daniel B. Ravicher
Karen Sandler
James Vasile
Aaron Williamson

Version 1.5.2
4 June 2008

Copyright (©) 2006, 2007, 2008, Software Freedom Law Center, Inc. Verbatim
copying and distribution of this entire document is permitted in any medium;
this notice must be preserved on all copies.

http://www.softwarefreedom.org

Contents

[Foreword vii
[1_Introduction 1
2 Common Copyright Questions 3
R Copylefl . . . oo 4
2.2 Choosing A FOSS Licensdo ovvion ... 4
2.2.1 The GNU General Public Licensd 6

2.2.2 BSD-Style or Permissive Licensed 8

2.2.3 The GNU Lesser General Public Licensd 10

2.2.4 The GNU Affero General Public Licensd 10

(2.3 _Copyright Assignment and Unificationl 12
2.4 Copyright for Documentation, Websites and Supporting Material 13
[2.5 Copyright Enforcementl 14
R5I Gatherthefactd 14

2.5.2 Familiarize yourself with the licensd 14

[2.5.3 Contact other copyright holders 14

CONTENTS

[2.5.4 Ask the violator to fix the problem| 15
[2.6 _Copyright Registratiod 16
(3 Common Organizational Issues 17
Bl Corporate Fornd. 17
[3.1.1 _Unincorporated Associationd 18
[3.1.2 Nonprofit Corporationd 18
13.1.3 Umbrella Organizations and Fiscal Sponsord. 19
3.2 Tncorporation. 20
[3.21 Where to Incorporatd 20
.22 ChoosingaNamd. 21
[3.2.3 Formation Documentd 22
B3 Govermancd 23
B4 Bookkeepingd 24
[.5__Tax Exemption Recognitiod 24
.51 Restricted Activitied 25
.52 Public Support Tesl 26
13.5.3 Related and Unrelated Business Incomd 26
B6 Filingd . . o o oo 27
4 Patent Defenses for FOSS Developers 29
l41 Structureof aPatend 30
WIT Claimd. 31

CONTENTS

vi

CONTENTS

[5.6 Trademark EQljcyl 50
(.7 Forking a Projectl 51

Foreword

It is a great personal pleasure for me to offer these brief remarks by way of
preface to a work composed by my colleagues at the Software Freedom Law
Center. As the founding director of the organization, I feel both proud of the
lawyers and “laymen” who work at SFLC, and immensely respectful of their
achievements. Like every hacker whose late-night solo adventure has attracted a
community of programmers doing every year what the originator could not have
achieved in a lifetime, I am moved by the experience of becoming merely one
among many—another of the minds and hands drawn to the work of inventing
a better world. I hope that as you read what follows you too will see some
reflection of that basic miracle of sharing, teaching, and growing.

Eben Moglen
New York, NY
February 2008

vii

Chapter 1

Introduction

We at the Software Freedom Law Center are extremely fortunate because we get
to provide legal assistance to some of the world’s leading free and open source
software (FOSS) projects. We are inspired by the hard work and commitment of
FOSS developers to produce code that can be freely shared and modified, and it
is our mission to help make sure that those developers have a legal environment
which allows their work to flourish.

Our intended audience for this Primer is any person interested in a basic under-
standing of the legal issues that impact FOSS development and distribution. In
particular, this Primer, like most of our other public work at SFLC, is addressed
to two constituencies. First, we provide creative, productive hackers insight on
how to interact with the legal system—insofar as it affects the projects they
work on—with a minimum of cost, fuss and risk. Second, we present a start-
ing point for lawyers and risk managers for thinking about the particular, at
times counter-intuitive, logic of software freedom. While these are the primary
audiences we intend to reach, we hope others will benefit from this Primer as
well, and we have purposefully given it a non-lawyer style of communication
(for example, by intentionally omitting dense citation of judicial or other legal
authority that is the hallmark of lawyers writing for lawyers).

While FOSS development can raise many legal issues, a few topics predominate
in our work; these are the issues most integral to FOSS projects. This Primer
provides a baseline of knowledge about those areas of the law, intending to
support productive conversations between clients and lawyers about specific
legal needs. We aim to improve the conversation between lawyer and client, but
not to make it unnecessary, because law, like most things in life, very rarely
has clear cut answers. Solutions for legal problems must be crafted in light of
the particulars of each client’s situation. What is best for one client in one

2 CHAPTER 1. INTRODUCTION

situation, may very well not be best for another client in the same situation, or
even the same client in the same situation at a later date or in a different place.
Law cannot yield attainable certainty because it is dynamic, inconsistent, and
incapable of mastery by pure rote memorization. This is why we do not provide
forms or other tools for “do it yourself” lawyering, which are almost always
insufficient and, in fact, can be very harmful to a project’s interests.

The specific topics addressed herein are:

(i) copyrights and licensing,

)
(ii) organizational structure,
(iii) patents, and

)

(iv) trademarks.

They are presented in this order because that most closely aligns with the life-
cycle of the legal needs of a typical FOSS project. When code is written,
copyrights immediately come into being. The terms under which the owner
of those copyrights allows others to copy, modify and distribute the code de-
termine whether it is considered “free” and/or “open source.” Once a project
gains speed, many benefits can be achieved by the creation of an organizational
entity for the project that is separate from the project’s individual developers.
After successful public release of a project, patent and trademark issues may
arise that need attention. Thus, this Primer proceeds in what is, to us, a very
logical order.

In closing, we are extremely pleased and honored to present this Primer and
hope that it will benefit both those FOSS projects we already know and those
we look forward to meeting in the future.

Chapter 2

Common Copyright
Questions

Many FOSS projects face similar copyright issues. Proper understanding of
these issues when the project is young can help avoid problems later. In this
chapter, we address some of the common early copyright questions posed by
FOSS projects. Because we do not know the specifics of your project, this doc-
ument provides general information, and not legal advice. If your FOSS project
has a specific need for legal advice, please/contact the Software Freedom Law Center
or seek other legal counsel.

All software is subject to copyright law. The moment you save code to a file,
copyright law gives you certain rights to control what other people can do
with your work. Because almost everybody who contributes code to a soft-
ware project has rights with respect to their code, understanding the basics of
copyright is essential to running a FOSS project.

A software copyright is the exclusive legal right to control the rules for copy-
ing, modifying, and distributing a work of software. A person (or company,
foundation, trust, or other legal entity) who has these exclusive legal rights is
called a “copyright holder”. Legal rules prohibit non-copyright holders from
copying, modifying or distributing copyrighted works without permission from
the copyright holder.

Copyright holders can permit other people to copy or modify their software.
That permission (called a “license”) can be as simple as a perpetual, uncondi-
tional and universal grant of permission to do any of the acts that are exclusive
to the copyright holder.

http://www.softwarefreedom.org/contact.html

4 CHAPTER 2. COMMON COPYRIGHT QUESTIONS

Other licenses are conditional. They allow people to copy or modify software
only if certain conditions are met. If you don’t meet the conditions, you don’t
have permission to copy or modify the software. If you make copies or distribute
modified versions of the software without satisfying the conditions (i.e. without
permission), you infringe the copyright, which gives the copyright holder access
to certain legal remedies. In particular, the copyright holder can sue you for
damages or ask a court to order you not to make or distribute further copies.

It is important for projects to understand the conditions in their licenses as well
as those in the licenses of code they link to and code they incorporate into their
project. Complying with the conditions in the license is essential to avoiding
copyright infringement.

If you have general questions about copyright, a good source of information is
the U.S. Copyright office’s Copyright FAQ.

2.1 Copyleft

One important copyright concept that originated in the world of FOSS licensing
is “copyleft”. “Copyleft” is a play on the word “copyright”. Whereas copyright
law has traditionally been used to withhold permission to copy, modify or dis-
tribute software, some licenses instead use copyright law to require that such
permissions be granted.

Copyleft licenses are conditional licenses. One of the conditions you must satisfy
before distributing copylefted software is that any changes you make to that
software be likewise released under the copylefted license. A copyleft license
ensures that all modified versions of your project remain free in the same way.
Such licenses are said to keep code “forever free”.

FOSS licenses can have stronger, weaker or no copyleft provisions, but they all
share a common effect: creation of a large pool of software that can be combined
and built upon to create new works. Copyleft licenses require that those who
take material from the common pool give something back as well.

2.2 Choosing A FOSS License

There are many FOSS licenses. No one license meets everybody’s needs. Cir-
cumstances vary because licensing decisions can affect which software libraries
you can use as well as the size and character of the community that gathers

http://www.copyright.gov/help/faq/

2.2. CHOOSING A FOSS LICENSE 5

around a project. Licensing decisions must be made in the context of a project’s
goals, resources, community and philosophy.

Each FOSS license balances different concerns and attempts in its own way to
foster a development community that meets the licensor’s needs. For example,
strong copyleft licenses like the GPL prioritize ensuring that all downstream
recipients receive source code and permission to modify the software. By con-
trast, the licenses we call “permissive licenses” guarantee the availability of their
permissions only for the first generation of the software; they are generally un-
derstood to permit recipients to release modified versions under more restrictive
terms (including both proprietary and copyleft terms). Some licenses address
issues concerning patents/] demand acknowledgments of prior authors, or re-
quire recipients to take other kinds of actions. Despite their differences, the
most widely-used FOSS licenses share a common goal: creation of a large pool
of software that can be combined and built upon to create new works.

When starting a new project, you should give particular consideration to the
license commonly used by your peers. Many Perl and PHP developers, for
example, choose to distribute their code under the same licenses as Perl and PHP
themselves. Authors of Linux drivers usually choose GPL version 2. OpenBSD
developers often favor the ISC license. By choosing the same license as their
peers in related projects, these developers make it easier to share code and create
copyright policies that are standard throughout a development community.

Most importantly, when choosing a license for your work, you must carefully
consider the licenses of the existing libraries and other code which your work in-
corporates, adapts, or depends on. Most FOSS licenses place some requirements
on the distribution of modified versions or derivative worksP Your choice of li-
cense for your work may be constrained by the licenses of those existing works.
This becomes a practical issue most often when you wish to use a version of
the GPL for your work but the license of an upstream work which your work

incorporates or depends on may be considered “incompatible” with that version
of the GPL.

Aside from these more practical concerns, you will actually adopt more than
just terms of distribution when you select a license. A license also signifies a
community structure and reflects the developers’ own histories and personal
convictions. Indeed, a license choice is often the most significant factor in pre-
dicting which developers will later be drawn to contribute to the project. Large
communities have grown up around specific licenses. Each of these communities

1Patent issues for FOSS developers are discussed in detail in § @ of this document.

2FOSS licenses differ explicitly or customarily in how they define the scope of derivative
works. For example, GPL licensors usually have an expansive view of what a derivative work is,
or assume that the underlying copyright system supplies the appropriate expansive definition.
By contrast, the Apache License version 2.0 provides an explicit definition of “derivative work”
that is narrower than the definition understood by the typical GPL licensor.

6 CHAPTER 2. COMMON COPYRIGHT QUESTIONS

has its own customs, beliefs, and personalities. Sometimes choosing a license
means choosing the community that embraces that license.

Finally, we cannot stress enough the importance of picking a license that is al-
ready widely used by the FOSS community. A familiar license makes user and
developer adoption quicker and easier. Also, if you choose a license already in
wide use, there is often substantial licensing knowledge and support available
to your projects. Indeed, many licenses are shepherded by specific organiza-
tions (e.g., the Apache Foundation’s stewardship of their license and the FSF’s
stewardship of the GPL). Choosing a license with organizational infrastructure
behind it can help foster adoption of your software and provide you and your
development team with insight into how the licensing models work.

Although it is possible for you to write a new license for your code, it is inadvis-
abldd. Each existing FOSS license was crafted to address the specific needs of a
particular part of the FOSS community. With so many licenses developed over
SO many years, it is extremely likely that an existing license meets the needs of
your project. If you find yourself feeling the urge to write a new license, it’s a
good sign that you might need to reconsider your approach.

Below we present several well-known licenses, or categories of licenses, that
you might wish to consider for your project, depending on the specifics of your
project and its goals. This list is illustrative only, and will be expanded in future
editions of this document.

2.2.1 The GNU General Public License

The GNU General Public License, version 2 (GPLv2), is the most widely used
FOSS license. Prior to 2007, GPLv2 was the only license in common use
that implemented a strong copyleft. In 2007 the FSF published |GPL version 3
(GPLv3), the first update of the GPL since 1991. GPLv3 has been adopted by
a significant number of projects@ The vast majority of FOSS projects license
their works under either a version of the GPL or a version of the GNU Lesser
General Public License (LGPL), which can be regarded as a more permissive
variant of the GPL.

Without knowing the specifics of your project and its goals, it would be impos-
sible to give you a definitive answer as to which license is best for your project.

30ften, instead of writing a new license from scratch, an existing license with various
exceptions can be used. This structure is widely accepted and much clearer than drafting a
new license from scratch.

4Moreover, most GPLv2-licensed works are licensed under GPLv2 “or any later version”,
or else do not specify a version number; this is understood at least to modify the copyleft
requirement so as to permit modified versions to be distributed under GPLv3 rather than
GPLv2.

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-3.0.html

2.2. CHOOSING A FOSS LICENSE 7

However, because of its prominence, every project should at least consider a
version of the GPL. The GPL enjoys several practical advantages over other
licenses and approaches licensing from a different philosophical position as well.
Most of these differences and advantages stem from the wide acceptance of the
GPL and the fact that it is the only license in common use that implements a
strong copyleft.

Because so many projects release under the GPL, there is a large community of
code that is licensed under the GPL or at least on terms that permit combining
that software with the GPL. If your project wants the benefit of using many
existing libraries or you plan to recycle a lot of found code, there’s a good
chance much of that code will be GPL-licensed. In order to take advantage
of that existing code, you’ll need to use the GPL or a license that permits
combinations with GPL-licensed software.

The popularity of the GPL provides another advantage to projects because a
familiar license makes adoption easier. Not only are people generally famil-
iar with the license, but there is a lot of knowledge and support available for
projects that use the GPL. The Free Software Foundation (FSF), which wrote
and maintains the license, offers some support for developers. They have expe-
rience in managing and enforcing GPL copyrights. They publish material that
helps people understand how to comply with the GPL. They also operate a
compliance lab to help with GPL compliance.

The strong copyleft provision is another key factor. Most developers who get
involved in FOSS enjoy the freedom to build on existing work and want to
preserve that freedom for others. These developers seek to keep enhancements
to their FOSS code free from proprietary restrictions and “forever free”. Please
see the discussion on copyleft in § 211

There is a large community of developers who care deeply about copyleft, and
many of them are more likely to devote their energy to GPL-license projects than
non-GPL’d projects. Using the GPL can help in attracting a large development
team of existing FOSS authors to a project.

Even if you don’t choose the GPL, there are strong arguments for choosing a
license that is understood to permit combination with GPL-licensed software
(i.e., a license which the FSF, authors of the GPL, call “compatible”). FOSS
development flourishes when different codebases can be brought together; li-
censes that allow such combinations are the most successful. Code licensed
under terms that do not permit such combinations are difficult to combine in
the same project.

8 CHAPTER 2. COMMON COPYRIGHT QUESTIONS

2.2.2 BSD-Style or Permissive Licenses

There are many licenses commonly referred to as “BSD” or “BSD-style” li-
censes[] Most of these licenses differ from each other in only minor ways, which
is why they can be grouped together and described generally as “permissive,
non-copyleft” licenses.

These licenses are permissive in that they place the bare minimum of restric-
tions on subsequent development and distribution. Using these licenses is as
close to releasing into the public domain as FOSS licenses get. These are not
copyleft licenses— they do nothing to preserve free software rights in down-
stream versions. Moreover, these licenses do not require source code distribu-
tion. If you choose a permissive license, other developers can incorporate your
permissive-licensed code into their closed-source, proprietary product, and they
can effectively conceal the modifications they made to your code.

The advantage of these and similar licenses (i.e. the ISC License) over more
restrictive licenses like the GPL is that they are very tolerant of redistribution
under a variety of licensing conditions, including under proprietary licenses. For
some projects, having their code included in proprietary software is desirable.
Many developers believe this may facilitate wide and quick adoption of the
technology by both proprietary software distributors and FOSS projects.

Other people are troubled by the lack of a copyleft in BSD-style licenses. If you
object to the prospect of downstream modifications to your code disappearing
inside proprietary projects, consider a license with copyleft provisions.

Here is a “three-clause BSD-style” license:

Copyright (c¢) 2008 YOUR NAME HERE
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copy-
right notice, this list of conditions and the following disclaimer

50Other common names include “MIT-style”, “two-clause BSD” and “modified BSD” li-
censes. The word “modified” refers historically to the revision of a more restrictive earlier
version of the BSD license. The term “MIT-style” is arguably misleading, since MIT as an
institution has used many licenses for its software, including very permissive licenses as well
as proprietary ones.

2.2. CHOOSING A FOSS LICENSE

in the documentation and/or other materials provided with the
distribution.

3. The name of the author may not be used to endorse or pro-
mote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AU-
THOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,

OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Here is a sample of the ISC (Internet Software Consortium) license:

Copyright (c) 2008, YOUR NAME HERE.

Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that
the above copyright notice and this permission notice appear in all
copies.

THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR
DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE INCLUDING ALL IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT,
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHAT-
SOEVER RESULTING FROM LOSS OF USE, DATA OR PROF-
ITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Finally, developers who are combining code from permissive-licensed projects
with code licensed under GPL or LGPL are encouraged to read Maintaining

10 CHAPTER 2. COMMON COPYRIGHT QUESTIONS

Permissive-Licensed Files in a GPL-Licensed Project: Guidelines For Develop-
ers, published by the SFLC.

2.2.3 The GNU Lesser General Public License

The GNU Lesser General Public License (LGPL) is sometimes classified as a
weak copyleft. It is much like the GPL, but it allows distribution of works
forming certain types of combinations with proprietary, closed-source software
that are generally assumed to be impermissible under the ordinary GPL. In
particular, the copyleft requirement in the LGPL does not extend to works that
link against your work. The LGPL is sometimes considered a “halfway” point
between the GPL (discussed in § 222.1)) and permissive licenses (discussed in

§2.2.2).

The most widely-used version of the LGPL is version 2.1. In 2007 the FSF
accompanied its release of GPLv3 with version 3 of the LGPL, which is explicitly
written as a list of exceptional permissions added to GPLv3.

Although the LGPL was originally aimed at libraries, you should not adopt it
merely because your project is a code library, nor should you dismiss it because
your software is not a library. If enabling proprietary software to combine with
your software is important to the goals of your project, the LGPL may make
sense regardless of the type of software you are writing.

2.2.4 The GNU Affero General Public License

The GNU Affero General Public License, version 3 (AGPL), is a variant of
GPLv3 published by the FSF in late 2007 Like the LGPL, it can be understood
as a modified version of the GPL, but whereas the LGPL provides additional
permissions allowing you to use code in more circumstances, the Affero GPL
contains an additional requirement that must be met if you include Affero-
licensed code in your project. This additional requirement involves network
deployments of modified versions.

In general, the GPL’s source code provision requirements apply only when soft-
ware is directly distributed in object code form to a user. If you do not distribute
the software, you have no obligation to distribute source code. Therefore, if peo-
ple interact with your software in a way that does not require them to have a
copy of it, most of the GPL’s source-code provision requirements do not apply.

6The AGPL is meant to be the successor to the Affero GPL, version 1, a variant of GPLv2
published by Affero, Inc. in 2002.

2.2. CHOOSING A FOSS LICENSE 11

The most common example of such interactions is online or networked appli-
cations in a client/server environment. For example, when a browser sends a
request to a website to perform an operation (such as database entry that oc-
curs by way of a CGI script), the web server performs the operation on the
client’s behalf. The client does not require a copy of the software to perform
the operationE. The GPL imposes no requirement to provide users who visit
your website with a copy of the software that runs on your server, even if your
server software is GPL-licensed software that you have modified.

In a lot of cases, this makes sense. Servers and clients interact in a lot of
circumstances, and offering source code to every client that interacts with every
server would be cumbersome. In many instances, it would be impossible.

In some cases, though, offering source code would be trivial, and yet significant
improvements are made to server-side software that never get contributed back
to the community. For example, because the GPL does not require it, people
rarely make the code behind their websites available to users of the site. It is
in these cases that the Affero GPL can help.

The AGPL requires that you offer corresponding source code to users who in-
teract with your modified version of AGPL-licensed software over a network.
Therefore, if you build a server based on improvements to AGPL-licensed soft-
ware, those improvements must be made available to all who use the software
via the network.

Some copyleft advocates regard the AGPL as the next logical step toward soft-
ware freedom. As more and more software is delivered as a service instead of as
copies of software packages, the Affero GPL can ensure that freedom endures
even as distribution dwindles.

The Affero GPL is not right for everybody. Some communities do not want the
added burden of packaging their code for release to network clients. The Affero
GPL creates code distribution requirements for a class of people the FOSS world
has traditionally treated more as end-users than developers. Even though some
end-users are now sophisticated enough to customize their installations of open
source server software, your project might not want to require them to publish
those custom changes. Moreover, there are many individual developers as well
as corporate commercial users who believe that AGPL takes the idea of copyleft
too far.

If you think the Affero GPL is the license for your project, visit the FSE website

"Most modern web applications include many components, including REST or CGI com-
ponents (which are server-side operations) and client-side operations (via Javascript running
in the browser). The latter involves distribution of software in the strict sense. The former is
the issue we are focused on here. There may also be circumstances in which distribution of
client-side code has copyleft implications for server-side code.

http://www.fsf.org/licensing/licenses/agpl-3.0.html

12 CHAPTER 2. COMMON COPYRIGHT QUESTIONS

for a copy of the license and some instructions on how to use it.

2.3 Copyright Assignment and Unification

With so many developers generating new copyrights almost constantly as they
develop software, most FOSS projects need a process to manage, and perhaps
centralize, copyrights.

Some FOSS projects require developers to transfer copyright ownership to the
“project” (either by assigning to the founder of the project, or to some legal
entity that represents the project) before new code is permitted into the official
distribution. Other projects instead leave individuals’ copyrights in the hands
of each contributor. Still others require contributors to “disclaim their copy-
right interest” (placing the contribution into the “public domain”), so that the
contribution can be included under the main copyright of the work. (The latter
of those is usually done for very small contributions.)

These are all valid options, and each has its benefits and drawbacks. The right
solution for you will depend on the specifics of your project, and the specifics
of each particular contribution. Centralizing copyrights via direct copyright
assignment provides some compelling advantages if developers are willing to do
so. The mild overhead of receiving such assignments is usually made up for by
the legal certainty it gives the software.

In general, the most important reason to contribute copyrights to the project
is to enable the project to enforce the license. Unifying ownership of the copy-
rights gives the project indisputable enforcement power that is both simple and
clear. If copyright ownership is scattered throughout a developer community
spanning many countries and years, enforcement efforts face additional barriers.
With a diluted base of copyright holders, enforcement efforts are hindered by
figuring out which pieces were copied, tracking down the developers who con-
tributed those pieces, and then getting them involved in the enforcement action.
Especially in cases where it is unclear how much or which code has been copied,
the project needs to avoid quibbling about whose copyrights are at stake.

Another reason to unify copyrights is to avoid and prevent later competing
copyright claims, such as claims that could be made by employers or developers
of proprietary software. A project’s copyright assignment process should include
questions and instructions designed to identify code with ownership issues, and
the code intake process should include mechanisms for dealing with such issues.
For example, each contributor should be asked about her employment situation,
and whether or not she is (a) working on the software with her employer’s
equipment or time, and (b) if an agreement exists between the contributor and

2.4. COPYRIGHT FOR DOCUMENTATION, WEBSITES AND SUPPORTING MATERIAL13

employer regarding rights to code developed off the employer’s premises on the
contributor’s own time and equipment.

Many contributors may not realize (or remember) that their employment agree-
ment gives their employer a copyright interest in software worked on at home
on their own equipment. Asking such questions early as part of a copyright
assignment process can expose these problems before the contribution is put
into the code repository and becomes a difficult copyright infringement issue for
the project.

If your project decides to unify copyrights, developers need not give up their
rights to use that code in other projects, even proprietary ones! The copyright
assignment can include a license back to the author which grants the author
the same benefits as a copyright holder. This includes rights not granted by
the project’s FOSS licenses, such as permission for proprietary relicensing. The
author can thus do anything with the code that she was able to do before
she assigned it to the project (except for granting an exclusive assignment to
somebody else).

2.4 Copyright for Documentation, Websites and
Supporting Material

The easiest way to approach licensing issues for documentation and other non-
code materials related to your project is to consider them as interrelated and
sometimes integrated parts. Because they are often distributed together, it is a
good idea to have similar rules apply to both your software and the related ma-
terials. Good software should include documentation, and good documentation
sometimes includes bits of code.

For the sake of simplicity, many projects release their documentation under the
same license as their code. Because of this, we are often asked whether the
GPL is a suitable license for documentation. It is, although it is not ideal. The
licensing questions for documentation and websites are different from those
questions in relation to code. Keep in mind that the licenses discussed above
were specifically designed for software projects and sometimes have strange
and confusing implications when applied to non-software works. We encour-
age you to investigate carefully the plethora of documentation licenses available
in the FOSS world, which include the (GNU Free Documentation License and
the [Creative Commons Attribution-ShareAlike Licensel

http://www.gnu.org/licenses/fdl.html
http://creativecommons.org/licenses/by-sa/2.0/

14 CHAPTER 2. COMMON COPYRIGHT QUESTIONS

2.5 Copyright Enforcement

Sometimes FOSS licenses are violated. This generally occurs when somebody
distributes copylefted FOSS code as part of non-free, closed-source, proprietary
products. Often, it is merely because of some confusion about the copyleft terms
of distribution (although other forms of violation, such as failure to attribute
authors, also occur). If this happens to your project, there are several things
you can do about it; but get organized before you act:

2.5.1 Gather the facts

Verify that your copyrighted code is being distributed or copied in violation of
your license. Exactly what code is copied in what product, and who holds the
copyright to that code? Who, exactly, is violating the license and of what does
that violation consist? If you can, use software tools available for analyzing
binary files (such as, on GNU/Linux systems, strings and strace) to confirm
that your software is in the product.

2.5.2 Familiarize yourself with the license

Know what licenses apply to the code, who holds the copyrights and what those
licenses say. Pay attention to license versions. There are multiple versions and
variations of numerous licenses, including the GPL, BSD-style licenses, the PHP
license and the Apache license. You should truly and completely understand
the obligations imposed by the license before you can explain to a violator how
to comply.

The GPL in particular is a lengthy license with a lot of requirements. If you
cannot explain the GPL, it will be hard to convince a violator to comply. If
you have questions, you can consult the Software Freedom Law Center website
and the Free Software Foundation website. These sites have a lot of information
that will help you understand the GPL and explain it to others.

2.5.3 Contact other copyright holders

Aggregating claims increases leverage. Groups of copyright holders should desig-
nate one point-person to handle communication with the violator. Other mem-
bers of the group should avoid making statements about the matter (whether

http://www.softwarefreedom.org/
http://www.fsf.org/

2.5. COPYRIGHT ENFORCEMENT 15

to the violator, in public or in private communication) and refer all inquiries to
the point-person.

2.5.4 Ask the violator to fix the problem

Be polite but firm. It is often the case that license violations are inadvertent
and easily fixed. Offer to help the violator take whatever steps are needed to
achieve compliance, and avoid threats of publicity and lawsuits for as long as
possible. Make sure the violator understands that your primary concern is the
issue of freedom, not a large financial settlement B. Once you convince them of
that point, they are likely to respond more positively even if they were initially
unresponsive.

The best way to ask the violator to fix the problem is to send a letter, via as
many different methods as possible (at least by email, courier service, and fax).
Below is some text you might include in a sample letter that can help start a
conversation about fixing the problem. Although it specifically mentions the
GPL, you should adjust it to the specifics of your license and the violation in
question.

I am writing to you on behalf of the FOO Project. We are the copy-

right holders of the BAR software package, which we distribute under

the terms of the GNU General Public License from http://www.example.org/.
Your product, the BAZ application, appears to be a derivative work

of BAR.

The only way you could have our permission to distribute copies or
derivative works of BAR would be to comply with the terms of our
license, the GPL. Unfortunately, it appears that you failed to comply
with the terms of the GPL by [BRIEFLY DESCRIBE THE LICENSE
VIOLATION HERE].

Most often, such license violations are simple misunderstandings.
Please contact me within three days, and we can discuss how best
to clear up this misunderstanding.

If polite and friendly requests do not work, lcontact the Software Freedom Law Center
or seek other legal counsel.

8However, you shouldn’t feel ashamed of asking for a financial component to the settlement,
especially if you plan to funnel those funds back into the project. The important thing is to
make compliance with the license the primary concern and financial redress as only a secondary
concern.

http://www.softwarefreedom.org/contact.html

16 CHAPTER 2. COMMON COPYRIGHT QUESTIONS

2.6 Copyright Registration

Projects sometimes ask us about registering their copyrights. You do not need
to register in order to have a valid copyright. You do not need to register to
enforce your copyright. However, registration can provide a project with better
options and an increased ability to enforce its copyright license against violators.

If you want to register your copyright, you can download the|copyright registration form
from the federal Copyright Office as well as linstructions on how to fill it out.

http://www.copyright.gov/forms/formtxi.pdf
http://www.copyright.gov/circs/circ61.pdf

Chapter 3

Common Organizational
Issues

This chapter addresses the common legal organizational issues facing FOSS
projects. It is intended to give these projects background nonprofit corporate
and tax information to assist them in the process of evaluating how best to form
and manage their organizations and activities. If your free software project has
a specific need for legal advice, please contact thelSoftware Freedom Law Center
or seek other legal counsel. Social organizational issues, such as how to maintain
your project, manage contributions and build community, while very important,
are not addressed in this guide.

3.1 Corporate Form

There are a number of different ways to organize a free software project: as an
unincorporated organization, as a nonprofit corporation, as part of an umbrella
organization or as an individual acting independently, for example. A threshold
question to ask is whether or not the project would benefit from adopting a for-
mal organizational structure. Advantages to adopting a corporate form include
some protection from liability and having a vehicle for handling assets for the
project. A formal corporate entity can also be useful to provide continuity to a
project, since the corporate form and identity remains as the individual devel-
opers and maintainers increase and decrease their involvement in the project.

17

http://www.softwarefreedom.org

18 CHAPTER 3. COMMON ORGANIZATIONAL ISSUES

Individual Liability

Developers working alone, apart from any corporate form, are not shielded from
personal liability for project-related activities. If a developer takes donations
or otherwise receives money for working on a solo project, the developer must
report that compensation as personal income and pay income taxes on it. Like-
wise, all legal liability to third parties will fall to the developer. For example,
the developer may be liable to users for breach of any express warranties made
regarding the software, or any implied warranties that are not effectively dis-
claimed. Claims by other software producers for copyright, patent, or trademark
infringement could also be brought directly against the developer. While there
may be advantages to one-developer projects, it is important to realize that
the personal assets of the developer could be completely exposed. Formal legal
structures, while not a panacea, can help developers to manage their liability
and risk.

3.1.1 Unincorporated Associations

Unincorporated associations are groups of individuals acting together as an as-
sociation without incorporation, and often without undergoing the formalities
of formation. Unincorporated associations can be organized with a constitution
and bylaws. They generally do not have to register with or report to a state,
but will be held liable for federal and state taxes if they do not obtain the ap-
propriate exemptions. In some states, unincorporated associations cannot hold
real property, but they usually open a bank account and otherwise hold assets.
For unincorporated associations, there is no liability shield against individual
liability. The associations can only be sued when the plaintiff has a cause of
action against all of its members, but individual members can be held liable for
acts they ratify or participate in. While there are some benefits to unincorpo-
rated organizations, the rules governing unincorporated organizations vary state
to state and often the organizational obligations of unincorporated associations
approach that of incorporated ones. This guide primarily discusses the issues
raised in forming and running incorporated organizations.

3.1.2 Nonprofit Corporations

Since legally a corporation is usually treated as a “person,” the corporation
bears the liabilities and receives the benefits of the corporation’s actions, rather
than the individuals who are involved in the organization’s operations. While
this is a clear benefit to organizing a corporation, a court could “pierce the
corporate veil” and disregard the corporate entity if the individuals involved

3.1. CORPORATE FORM 19

commingle their funds with those of the corporation or fail to maintain the
appropriate corporate records (like minutes of board meetings, for example).
If this should occur, the individuals involved would be personally liable for the
responsibilities of the corporation. Additionally, individuals could be personally
liable for negligent behavior or illegal activities.

Creating and maintaining a corporate form is a lot of work, as we discuss below,
and may not be the appropriate organizational structure for a FOSS project.
If the project does not consist of more than a few individual developers it may
make sense to continue to work in an individual capacity.

3.1.3 Umbrella Organizations and Fiscal Sponsors

Another option available to free software projects is to join an already existing
nonprofit organization. There are several tax exempt organizations that act
as an umbrella organization and provide fiscal sponsorship to the free software
projects that join them. The key advantage to joining an umbrella organization
is that new projects do not have to bear the expense or administrative burden
of incorporation. Umbrella organizations establish their own board of directors,
keep the books for the organization and ensure that the entire organization
conducts its activities in accordance with the appropriate state corporate laws
and the federal and state tax laws.

Software Freedom Conservancy

Because many of its clients could benefit from the protections of having a le-
gal entity as well as tax exemption status, but were reluctant to pay the fees
associated with formation or dedicate the time necessary to start and main-
tain a tax exempt nonprofit, the Software Freedom Law Center| has established
The Software Freedom Conservancy. Since its launch in 2006, the Conservancy
has grown to include free and open source software projects active in a wide
range of fields. Projects that wish to join the Conservancy must apply| to be
evaluated by the Conservancy’s Project Evaluation Committee. Once a project
joins, it can receive donations that are deductible to donors under U.S. tax
law and benefit from financial and administrative services that the Conservancy
offers. The Conservancy has chosen not to charge administrative fees to its
member projects and to rely on donations to support its activities at the um-
brella level. It does not require that projects assign their copyrights to the
Conservancy, nor does it require that they choose any one particular free soft-
ware license.

http://www.softwarefreedom.org
http://conservancy.softwarefreedom.org
http://conservancy.softwarefreedom.org/overview/

20 CHAPTER 3. COMMON ORGANIZATIONAL ISSUES

Other umbrella organizations

There are several other umbrella organizations organized specifically for free
software projects. Each of these organizations has its own rules about joining.
Some projects require the assignment of all of the project’s copyrights while
others do not. Different organizations allow their member projects to have
different levels of control over their finances and operations. Examples of such
free and open source software organizations are:

e The Apache Foundation, which has a project called Incubator, created to
help new projects to join the foundation.

e [The Free Software Foundation acts as an umbrella organization for its
projects. The FSF’s model has a philosophical component and its projects
must meet certain requirements| prior to joining.

e [Software in the Public Interest was originally formed as a corporate struc-
ture for Debian and has expanded to include a number of other free soft-
ware projects. SPIis in the process of developing guidance for new projects
interested in joining.

3.2 Incorporation

The first step in establishing an independent nonprofit is to create a legal entity.
While it is not necessary to retain a lawyer to assist you with your incorporation,
it can be helpful to have the assistance of one to help you through the process
and to make sure that the organization complies with all of the relevant state and
federal laws. This description of the steps towards corporate formation should
be used as only a guide. You should consult with a lawyer and/or examine all
state and federal rules closely throughout the formation process.

3.2.1 Where to Incorporate

The process for incorporating varies by state, so you will need to inquire as to
the requirements in your home state (or any state in which the organization
has offices or is conducting its business). Generally, the incorporator can choose
which state should be the nonprofit’s home state.

Nonprofits often choose to incorporate in Delaware, where there are fewer ad-
ministrative hurdles to incorporation and the process is quick (Delaware has
expedited same day incorporation for a fee). A potential pitfall, however, is

http://www.apache.org/
http://www.apache.org/foundation/how-it-works.html#incubator
http://www.fsf.org/
http://www.gnu.org/help/evaluation.html
http://www.spi-inc.org
http://www.spi-inc.org/treasurer/associated-project-howto.html

3.2. INCORPORATION 21

that some states have requirements for corporations formed elsewhere that are
conducting activities in the state which could make it more advantageous to
keep the incorporation local. For example, corporations organized outside of
New York are considered foreign corporations by the state of New York and are
required to pay fees and be subject to New York regulations if they conduct a
significant amount of their activities or have an office within the state. For this
reason, it usually does not make sense for an organization primarily located in
New York to incorporate elsewhere. Many other states have requirements that
corporations register as foreign corporations doing business in that state which
could incur additional fees and administrative burdens to the organization.

In states where the organization does not have a presence in the state that
has been chosen for incorporation (for example, having a key director or officer
residing in that state), an agent for service of process may need to be appointed.
This ensures that there is someone present in the state to receive legal notices
and other official documents. There is an entire industry that has formed around
this requirement and there are many for-profit companies that can be hired to
perform this function. To appoint an agent, a project will generally need to
sign a letter of appointment and also pay an annual fee. Many agents will offer
other services, such as handling incorporation and annual reporting which may
be expensive but can also ease the burden of handling the paperwork directly.

Many states maintain websites that often provide links to forms and other infor-
mation regarding incorporation, including |California, [Delaware, and New York.

3.2.2 Choosing a Name

Some states allow organizations to reserve their name in advance of incorpora-
tion. If there is some reason for delay in incorporation, using these procedures to
reserve a name could be helpful if it is likely that another nonprofit organization
or company would be interested in using the same name (See § [for a discus-
sion of trademark concerns that may arise in this process). The organization’s
name should be unique and descriptive. Some states have restrictions on using
certain words within the name of the organization. For example, words that
imply a certain kind of government office, savings and loan reference or profes-
sional license may not be permissible names of the organization without special
permission. Examples of this could be “State Police,” “Bank,” “Lawyer,” or
“Trust.”

Some states also require that the words “corporation” or “incorporated” be used
in the name of the organization. In these cases, it will be necessary to include
“Inc” after the name of the nonprofit, even though the corporation is a nonprofit
corporation. This might have the result that the name of the organization
looks like “FOSS Project Foundation, Inc.”, but this requirement will be uniform

http://www.corp.ca.gov/index.htm
http://corp.delaware.gov/
http://www.dos.state.ny.us/corp/corpwww.html

22 CHAPTER 3. COMMON ORGANIZATIONAL ISSUES

for states that require it. Some states do not have this requirement and the
organization can be named without the corporate indicator.

3.2.3 Formation Documents

There are a number of documents that are necessary to prepare during the
formation process. Many existing free software organizations keep this corporate
documentation available on their websites and are a good resource to understand
the different ways that these documents can be drafted.

A nonprofit’s certificate of incorporation is the first document that the or-
ganization will have to create. The corporate divisions of many states provide
forms of their certificate of incorporation on their websites. The certificate of
incorporation is a standard document, describing the basic ways in which the
nonprofit will be formed. Most nonprofits will organize as non-stock nonprofit
corporation, meaning that there are no owners of the corporation. The corpo-
ration is created in the public interest so there can be no shareholders or other
owners that have a stake in the corporation.

The certificate of incorporation states the project’s address and states the pur-
pose of the organization. Generally, it is advantageous to state the nonprofit’s
purposes as broadly as possible in the certificate of incorporation so that the
description encompasses all of the activities that the organization might engage
in over the life of the organization. The certificate of incorporation must also
include certain provisions if the organization intends to apply for federal tax
exemption.

The corporate workings of the organization are set forth in the nonprofit’s by-
laws. The bylaws describe whether or not the nonprofit will have members,
how many directors there will be and what their powers are, what officers will
be appointed or elected and it can also state financial controls and procedures.
The bylaws are adopted by the board of directors, but free software projects
have a great deal of flexibility about how that document can be developed.
Some projects merely adopt generally applicable bylaws, leaving the directors
with significant flexibility in managing the organization. Others create a public
commenting process to ensure that the needs of the community are codified in
detail in the document.

Meetings of the directors must be recorded in the board’s minutes that should
be kept in the organization’s corporate records. Most important decisions about
the organization will be decided at these meetings, and the minutes comprise
the paperwork support of these decisions. Where it is not possible to organize a
meeting time that is sufficient for a quorum of directors, directors can also sign
consents in lieu of a meeting (meetings, which generally are required to take

3.3. GOVERNANCE 23

place at least once annually, can be by phone or in person; it is not clear in
most states whether electronic meetings without any telephony component are
sufficient). Consents simply set forth the decision that the directors agree to,
and can be signed by each director separately with binding effect on the whole
upon signature by the proper number of directors.

Organizations should also apply for an EIN, or an employer identification num-
ber, from the IRS. As the name suggests, this number is required by federal law
if the organization has employees, but it is necessary to have if the organization
intends to open a bank account and can be useful to help the nonprofit trans-
act business. An EIN is is analogous to a social security number for corporate
entities. The [process to obtain an EIN is simple and can be done by phone or
online.

3.3 Governance

A project that forms its own independent legal entity must form a board of
directors who are responsible for the overall management of the organization.
Laws differ from state to state, but many states require a minimum of three
directors. Depending on how the project is organized and maintained, a different
number of directors might make sense. If the project already has an advisory
council or small group of project leaders, those individuals could assume the
duties of director. Projects might want to consider including directors that are
not directly involved in the development of their software, but have free software
project management or nonprofit organizational experience. It can be helpful
to have directors with a wide perspective on the board. An odd number of
directors can help avoid an even split of votes on contentious issues.

Becoming a director of a nonprofit organization is a serious responsibility and
can be quite time consuming. Directors are bound by both a duty of care and
a duty of loyalty to the organization. To satisfy their duty of care, directors
must act with the same care that an ordinary, prudent person would exercise
in a like position or under similar circumstances. The duty of loyalty requires
that directors act in good faith, be faithful to the organization and pursue
the organization’s best interests. Directors also have an obligation to act in
accordance with the mission, rules and policies of the organization.

To satisfy these obligations, directors must stay informed about the activities
of the organization so that they can make informed decisions and stay inde-
pendent. They must promote the organization’s mission and avoid acting in
self interest. Where potential conflicts of interest arise, directors must disclose
the conflicts as soon as possible to the board, avoid influencing other board
members and, depending on the nature of the conflict, recuse themselves from

http://www.irs.gov/businesses/small/article/0,,id=97860,00.html
http://www.irs.gov/businesses/small/article/0,,id=102767,00.html

24 CHAPTER 3. COMMON ORGANIZATIONAL ISSUES

voting on that issue. Directors should be particularly vigilant to avoid conflicts
relating to contracts and relationships established between the organization and
the director as an individual, or with another organization or company in which
that board member has influence.

Organizations should consider creating a document setting forth directors’ obli-
gations to the organization for potential directors to read and agree to in advance
of becoming a director in the organization. This could help avoid confusion over
the life of the organization and help the directors to be aware of and remain
focused on their duties to the organization.

3.4 Bookkeeping

It is important that nonprofit organizations keep good books and records of their
financial activities. This is necessary to be able to present appropriate back-up
in the case of an audit or other inquiry later in the organization’s lifetime, but
also to ease in the preparation of state and federal filings. Additionally, keeping
good financial records of the nonprofit’s activities assists the organization with
continuity and eases any future transition of personnel. For example, in the case
where an organization’s volunteer treasurer realizes that the obligations of the
position are too great and chooses to resign, the transition to a new treasurer is
much more likely to be a smooth process if the books are organized and complete,
allowing the new treasurer to assume the responsibilities of the position easily.
Ideally, financial transactions will be recorded using accounting software, such
as (GNU Cash. Nonprofits can also employ an external professional bookkeeper
to assist with the books. Professional bookkeepers are useful in helping new
organizations start running their operations in an organized manner, and can
help make it easier to avoid problematic uses of funds such as the commingling
of moneys.

3.5 Tax Exemption Recognition

One of the advantages to forming as a nonprofit organization is that the project
may be eligible for federal tax exemption as a charitable organization under
§501(c)(3) of the Internal Revenue Code. In addition to an exemption from
some taxation by the federal and state governments, tax exempt organizations
can receive donations for which the donors can take deductions on their own
taxes. The IRS has regularly recognized organizations created for the promotion
of free and open source software projects as having charitable purposes.

http://www.gnucash.org/

3.5. TAX EXEMPTION RECOGNITION 25

To initiate the process towards recognition of tax exemption, nonprofits must
complete the IRS’s [Form 1023l The form gives basic information about the
organization and requires the organization to submit a detailed description of its
activities, including the percentage of the organization’s activities that are spent
on each particular activity. The form also requires that the organization provide
three years of financial history or, if the organization has recently been created,
a budget of what the organization expects to receive in donations and income
and what and how it expects to spend its money. The IRS publishes detailed
instructions that provide guidance as to how to properly complete the form.
Organizations that receive recognition of tax exemption are obligated to make
their applications available on request, which can be a useful resource if another
nonprofit that has similar operations has already obtained its recognition.

Nonprofits now have (with extensions) 27 months from formation to achieve
tax exemption recognition that applies retroactively to formation. The tax
exemption recognition process will take several months, even if the IRS has no
objection to the filing. If the IRS has any concerns about the application, the
reviewer will contact the organization and provide a list of questions that he or
she will give the organization the opportunity to address.

3.5.1 Restricted Activities

Once a nonprofit achieves 501(c)(3) tax exempt status from the IRS, there
are certain restrictions preventing the organization from spending money or
conducting certain activities. Some specific activities that are restricted (and
can jeopardize the organization’s tax exempt status) include lobbying activities
and spending money in ways other than are consistent with the charitable
purposes of the organization. Also, none of the organization’s earnings may
inure to any private individual.

Lobbying

A 501(c)(3) nonprofit may not attempt to influence legislation as a substantial
part of its activities and it may not participate in any campaign activity for
or against political candidates. The law offers no clear test for what amounts
to a substantial amount of legislative activities. While one court opinion indi-
cated that lobbying expenditures of less than five percent of an organization’s
resources did not represent a substantial part of its activities, courts differ in
their opinion and others recommend that no more than 15% of an organization’s
total expenditures be for lobbying. The IRS offers an alternative test called the
Expenditure Test which examines certain permissible and impermissible expen-
ditures in an attempt to provide clearer rules for organizations that engage in

http://www.irs.gov/pub/irs-pdf/f1023.pdf
http://www.irs.gov/pub/irs-pdf/i1023.pdf

26 CHAPTER 3. COMMON ORGANIZATIONAL ISSUES

some lobbying. If your organization is engaging in more than a trivial amount
of lobbying activities or resource allocation you should seek legal advice from
an attorney.

3.5.2 Public Support Test

The IRS classifies charitable organizations by the ways in which their funding
is received. Organizations that are broadly funded by the public are considered
to be publicly supported and organizations that received most of their income
from a few sources are considered to be private foundations. Private foundations
have strict rules and regulations about their use of funds and dealings with
contributors that are not applicable to publicly supported organizations. The
IRS has established a [testl to determine whether or not a nonprofit’s funding
can be considered as “public support.” In making the calculation, organizations
tally the amount of money received from public donations, where the amount
from any one contributor can only be included up to two percent of the total
amount of the organization’s funding. This amount is then divided by the
total amount of funding that the organization received in that year. To be
considered publicly supported, organizations must have received over a third of
their funds from “public support.” There is also a “facts and circumstances”
test, applicable where the organization has received more than ten percent of
its funds as “public support” and has other circumstances that show the public
nature of the organization (for example, the public nature of the board, a strong
program to solicit funds from the public or services that appeal to a broad
segment of the public).

The IRS acknowledges that new organizations may not be able to meet the
public requirements within the first years of their operations and so new non-
profits can apply for an advanced ruling of public support at the same time as
they apply for recognition of tax exempt status. Organizations that obtain the
advance ruling must satisfy the public support test by the end of the five year
period. Organizations that cannot show that they are publicly supported at the
end of the period will be required to pay taxes for the previous five year period.

3.5.3 Related and Unrelated Business Income

Nonprofits are also able to receive income from business activities, which can
include, for example, selling educational materials, selling t-shirts or other mer-
chandise and selling services. If the business activities are furthering the non-
profit’s corporate mission, the income is considered “related business income.”
Other activities are considered “unrelated business income.”

http://www.irs.gov/publications/p557/ch03.html#d0e4785

3.6. FILINGS 27

If the income is related business income, the income is not taxed. Related
business income is not considered in the public support test, which could be
advantageous, since in the calculation of public support, as discussed above
(where the numerator is “public support” and the denominator is all of the
organization’s support), related business income is not included in either of the
numerator or the denominator. Related business income is limited in that a
publicly supported charity must not depend primarily on gross receipts from
related activities.

If the income is unrelated business income, the income will be taxed. Generally,
organizations that expect to receive more than $500 in unrelated business income
must also pay estimated taxes. In calculating public support, unrelated business
income is included in the denominator but not the numerator, so the more
unrelated business income that an organization recognizes, the more money it
will need to show in public support to maintain its public charity status.

Additionally, if an organization receives most of its support from income, rather
than donations, it will move from being a 509(a)(1) organization to a 509(a)(2)
organization, in which case it will be subject to an additional test that less
than a third of its total support must be from unrelated business activities. For
509(a)(2) organizations, the public support test is a little different for related
business income in that it is included in both the numerator and the denominator
instead of excluded (there are exceptions to this including an exception that
money from persons with certain relationships to the organization be excluded
from the numerator).

3.6 Filings

Organizations must remain vigilant about staying compliant with all of the
applicable federal and state laws and must be sure to make the appropriate
filings on time. Generally, an organization will need to make an annual federal
tax filing, an annual state tax filing and often annual corporate filings.

For 501(c)(3) tax exempt organizations, the federal government requires an
Annual Information Return on [Form 990. If the organization receives less
than $100,000 a year, it may be eligible to submit a shorter form of this, called
aForm 990-EZ. If the organization normally receives less than $25,000 per year,
it may not be required to file the Form 990 at all. An organization must file
Form 990-T if it has $1,000 or more of gross receipts from unrelated business
during the year.

Nonprofits should check to make sure that they satisfy all appropriate state
filings. For example, many states require that organizations that receive over

http://www.irs.gov/pub/irs-pdf/p598.pdf
http://www.irs.gov/pub/irs-pdf/f990.pdf
http://www.irs.gov/pub/irs-pdf/f990ez.pdf
http://www.irs.gov/pub/irs-pdf/f990t.pdf

28 CHAPTER 3. COMMON ORGANIZATIONAL ISSUES

a certain amount of income must have an audit performed on their annual
financials. New York State, for example, requires that the audit and a copy of
the financial statements be filed with the Charities Bureau. If your organization
has a significant income, it is recommended that you consult with an accountant
and a lawyer to make sure that your organization is compliant with all of the
appropriate requirements.

http://www.oag.state.ny.us/charities/forms/forms_faq.html#q9

Chapter 4

Patent Defenses for FOSS
Developers

A patent is a form of property giving its owner a monopoly power to ex-
clude others from exploiting an invention] “claimed” in the official document
through which the patent is issued. In the United States, patents are issued by
the [U.S. Patent and Trademark Officel (USPTO). The document itself is also
referred to as “a patent.” A recently issued U.S. patent expires 20 years from
its earliest effective filing date (typically, though not always, the filing date of
the application that matured into the patent). Many patents in force today, in
the U.S. and elsewhere, apply to making, using, and distributing software. Any
FOSS project therefore faces some risk of assertion of patents against contribu-
tors to, and distributors and users of, the project’s code.

There is a tendency both to overestimate and underestimate the threat that
patents pose to FOSS. Patent holders are unlikely to sue individual developers

1Our description of patents as “property” should not be read as legitimization of any
particular aspect of patent law. Rather, we are simply observing that patents, as recognized by
the applicable legal system, possess characteristics associated generally with forms of personal
property. For example, like other forms of personal property, patents can be bought and sold
and give the owner the power to exclude others from enjoying or exploiting the legal interest
inherent in them.

2For simplicity, and following usual legal practice, we use “invention” to mean a purported
invention claimed in a patent.

3In this document we avoid use of the term “software patent,” which has no generally
agreed-upon definition. Under current U.S. law, software per se is (probably) not patentable,
but it is generally a simple exercise in artful legal drafting to represent a software-related
invention as a claim covering patentable subject matter (generally by reciting generic, well-
known hardware features). Although the details differ, the basic situation is much the same
in many other countries, despite a widely-held misconception in the FOSS community that
the patentability of software-related inventions is peculiar to U.S. law.

29

http://www.uspto.gov/

30 CHAPTER 4. PATENT DEFENSES FOR FOSS DEVELOPERS

or nonprofit organizations associated with FOSS projects, since they do not hold
substantial assets or enjoy a revenue stream from which substantial patent roy-
alties could be extracted. Nevertheless, such lawsuits are not without precedent
and might be a tactic employed by proprietary software companies compet-
ing unsuccessfully with FOSS projects. Moreover, commercial distributors and
users of a FOSS project are a likely target for litigious patent holders, and suits
against such parties may adversely affect the entire community surrounding the
project, including the developers producing the software. Furthermore, some
patent-holding competitors of FOSS projects engage in non-litigious conduct
calculated to disrupt such projects and their communities by fostering the per-
ception that the projects carry significant patent risk.

This chapter provides guidance to FOSS developers who wish to protect their
projects and their users against patent risk. It focuses on defensive measures
that developers can take if they have been threatened by a patent holder with
allegations of patent infringement. There are many other issues involving the
relationship between patents and FOSS that are beyond the scope of this doc-
ument.

This document deals solely with U.S. law. Because we do not know the specifics

of your project, we provide general information, and not legal advice. If your

project has a specific need for legal advice, please contact thelSoftware Freedom Law Center
or seek other legal counsel.

4.1 Structure of a Patent

This subsection briefly describes some of the more important features to look
for when reviewing a patent. The parts of the patent other than the drawings
and claims are referred to as the specification.

Every patent has a title. The title tends to be worded rather broadly, but it
has essentially no legal significance. Some FOSS developers mistakenly assume
the title has some bearing on the content or scope of the patent claims; it does
not.

Each patent has a seven-digit number that identifies it. The front page of
the patent also lists the application number of the patent, which was used to
identify the application before it issued as a patent. The front page also lists the
past U.S. patents and other past publications that were formally considered by
the patent examiner during the examination or “prosecution” process. (Such
publications constitute a form of “prior art.”)

4Patent examiners are the officials charged with determining whether to issue an applied-for
patent.

http://www.softwarefreedom.org

4.1. STRUCTURE OF A PATENT 31

The abstract is supposed to provide a brief summary of the invention disclosed
in the patent. As with the title, many non-lawyers make the mistake of assuming
that the abstract defines the scope of the patent. In fact, the abstract has little
if any legal significance, although it may sometimes have some bearing on the
interpretation of the patent claims.

The drawings accompany the body of the patent, and are supposed to help il-
lustrate the implementation of the invention described in the body of the patent.
Drawings in software-related patents most commonly include system diagrams
and flowcharts.

Some patents list related patent applications (any of which might already
have issued into a patent). There are various ways in which patents might be
related to one another. For example, a patent application might have been
divided into multiple “divisionals” if the patent examiner determines that the
application claimed more than one invention. In other cases, the patent appli-
cant might have filed a “continuation,” with additional patent claims, based on
the original application. The family trees of patents can be very complex.

The main body of the specification usually includes sections purporting to pro-
vide the background of the invention and a summary of the invention,
and always includes a section known as the detailed description.

The background of the invention historically tended to give the applicant’s view
of the prior art, but this has become increasingly uncommon as applicants fear
that any statements about the prior art will be used to limit the scope of the
patent. Nevertheless, this section may be useful in indicating what is not covered
by the patent.

The summary of the invention, despite its name, should not be assumed to give
a reliable summary of the invention as claimed in the patent.

The detailed description is supposed to describe a particular implementation
of the invention, and is supposed to provide enough information to enable a
“person having ordinary skill in the art” to replicate the claimed invention
without undue experimentation. Whether the disclosures in most software-
related patents actually meet this standard is open to question.

4.1.1 Claims

The claims, which are the most important part of the patent, appear at the
end of the patent. The claims define what the patent actually covers. When
you read a patent, it is usually a good idea to begin at the end, with the claims,
and use the rest of the patent primarily as an aid in interpreting the scope of

32 CHAPTER 4. PATENT DEFENSES FOR FOSS DEVELOPERS

the claims. (It is common for patent attorneys to draft claims before drafting
any other part of a patent application.)

Each claim is a single sentence. Claims begin with a “preamble” followed by one
or more “limitations.” The division between the preamble and the limitations is
usually, but not always, clear. The preamble might seem to restrict the claim in
some way, such as by stating what might look to you like a field of use. However,
you cannot generally assume that the preamble will actually have any limiting
effect.

Claims are classified as either independent or dependent claims. Independent
claims are those claims that make no reference to other claims in the patent. De-
pendent claims explicitly incorporate the contents of other claims in the patent.
A dependent claim is necessarily narrower in scope than the claim from which
it depends, because it includes an additional limitation not present in the in-
corporated claim.

Software-related patent claims in recently-issued patents often take the form
of “system” or “apparatus” claims, “method” claims, and “computer program
product” or “computer-readable medium” claims. System claims recite the el-
ements of a system (which might include one or more computers) as a kind of
machine or static object. Method claims are algorithmic in form. Computer-
readable medium claims typically duplicate the limitations found in correspond-
ing system or method claims in the patent, but are intended to cover software
embodied in a storage or distribution medium. Such claims are particularly de-
signed to make distributors directly liable for patent infringement. Computer-
readable medium claims are also often used when claiming inventions that focus
on data structures and user interfaces.

4.1.2 File Wrapper

Not part of the patent itself, the file history or “file wrapper” of a patent col-
lects all the written communication that took place between the patent applicant
and the patent examiner during prosecution of the patent application. It will
include “office actions” mailed by the examiner, which may contain rejections of
the patent application’s claims based on prior art or other grounds, and “amend-
ments” modifying the claims or counter-arguments submitted by the applicant.
File wrappers can be ordered from the USPTO through its Public PAIR/website
or from a commercial service.

Every statement made by the patent applicant that is recorded in the file wrap-
per potentially has a limiting effect on the scope of the patent. The file wrapper
can therefore be valuable when developing non-infringement determinations,
discussed below.

http://portal.uspto.gov/external/portal/pair/

4.2. PATENT INFRINGEMENT 33

4.2 Patent Infringement

To prove that ymﬁ infringe a patent, the patent holder must show that you
make, use, offer to sell, or sell the invention as it is defined in at least one claim
of the patent. As those verbs are understood, they overlap closely with the acts
that FOSS licenses permit as a matter of copyright law. (For example, “selling”
includes any act of distribution, even if such distribution is free of charge.)
Informally, and for simplicity, we speak of the software itself as infringing a
patent, although strictly speaking this is not correct, and it has probably given
rise to misconceptions in the FOSS community regarding whether particular
software is “patent—encumbered.”ﬁ

For software to infringe a patent, the software essentially must implement ev-
erything recited in one of the patent’s claims. It is crucial to recognize that
infringement is based directly on the claims of the patent, and not on what is
stated or described in other parts of the patent document.

If a court determines that you have infringed a patent, the patent holder is
entitled to have the court stop you from infringing and assess money damages
that you must pay for past infringement. Even if you modify the code to avoid
the claims of the patent, you may still be liable for infringement that preceded
the modification.

Lack of prior knowledge of a patent is not a defense to patent infringement. It is
also no excuse that you independently came up with the ideas implemented in
your software. (However, under current law, you may have a defense if you can
prove that your independent invention preceded the patent holder’s invention,
or that your invention preceded the filing date of the patent by at least one

year.)

5FOSS developers should not get the impression from our use of the pronoun “you” that
they are particularly at risk of being sued for patent infringement; as noted above, suits
against such developers are unlikely.

6Some FOSS developers have assumed that patent law distinguishes between source code
and object code, and that liability for patent infringement can be avoided by distributing
source code only, but U.S. patent law provides no clear basis for this assumption. Distribution
of source code might well give rise to liability for contributory patent infringement, at least,
and many claims in issued patents would be literally infringed by the distribution of source
code. The First Amendment may place limits on the policing of source code publication by
the courts, but this issue has not yet been addressed by the courts in a patent infringement
context.

34 CHAPTER 4. PATENT DEFENSES FOR FOSS DEVELOPERS

4.3 Becoming Aware of a Patent

There are various ways in which you might become aware of a specific patent.
The patent holder might publicize it, a FOSS developer might call attention to
it, a user might ask you about it, or you might discover it in a web search. The
patent holder might also contact you directly. For example, the patent holder
might send a letter accusing you of infringing a patent, or offering to license the
patent to you. The guidance given in this document is applicable regardless of
how you learn of the patent. If you receive threats from a patent holder, contact
the [Software Freedom Law Center| or another lawyer immediately.

We generally do not recommend that you attempt to search patents or published
pending patent applications. U.S. patent law creates disincentives for searching,
even though one of the main justifications given for the patent system is that the
disclosure in the specification teaches the public how to practice an invention
that might otherwise be secret. Those who become aware of the existence of a
patent are subject to enhanced damages if they are found to have subsequently
infringed “willfully.” Moreover, we find that developers often assume that the
patents they discover are broader in scope than they actually are, and thus such
developers become overly or needlessly worried. If, despite this, you do intend
to conduct a patent search, you should seek legal advice first.

4.4 Understanding the Claims

If you have become aware of a patent that you believe may threaten your project,
your first step should be to ascertain the meaning of the claims. This is not
a simple task, because patent claims are drafted artfully, using jargon unique
to patent attorneys, and are often deliberately drafted in an obscure manner.
You should first try to determine the “plain meaning” of the claims. Terms
in patent claims are presumed to have their ordinary and customary meanings,
which include definitions in use in the relevant technical field.

If some of the words in the claims cannot be properly interpreted using the
plain meaning approach (for example, if a claim has multiple interpretations),
you should interpret the claims based on definitions of terms in the patent
specification, the file wrapper, or other sources, such as technical papers or your
own technical expertise. Depending on how artfully the patent application was
drafted, this may prove to be a difficult task. Patent attorneys sometimes make
up their own terminology to obscure the relationship between the claims and
the prior art, and they often use non-limiting examples rather than definitions
in the specification.

http://www.softwarefreedom.org

4.5. BUILDING DEFENSES 35

If the patent examiner rejected claims in the patent application over prior art,
the file wrapper might show that the prosecuting patent attorney supplied some
definition of a term in order to avoid that prior art.

4.5 Building Defenses

Once you have some understanding of the scope of the claims, you should work
with your attorney to develop defenses that will reduce the risk presented by the
patent. Four important defenses are license, non-infringement, invalidity, and
unenforceability. Of these, it is especially useful to develop and document an
informed, good-faith argument that (a) even if the patent is valid, your software
does not infringe it, and (b) the patent is not valid.

4.5.1 License

You may be able to show that you have a license to use the patent, or some
similar immunity from suit by the patent holder. Such promises may take a
number of explicit and implicit forms in addition to formal patent license agree-
ments. For example, some patent-holding companies have issued general public
pledges or covenants that apply to the use of FOSS. The patent holder might
have agreed with a standards body to provide royalty-free access to patents
needed to implement the standard. The patent holder might also have granted
a license by contributing or distributing code under a FOSS license, as some
FOSS licenses include explicit patent license grants. A patent holder providing
code under a FOSS license without an explicit patent license grant, such as
GPLv2, would nonetheless probably be held to have granted a license implicitly
to recipients of the code, though the scope and coverage of such an implied
license would be difficult to establish.

Your attorney should carefully examine the document that contains (or implies)
the non-assertion promise to determine who and what are actually covered under
it. In many cases such promises are quite narrow and will provide no reliable
protection for your project.

4.5.2 Noninfringement

A noninfringement determination is a showing that none of the patent claims
actually “read on” your software. In other words, your software does not ac-
tually implement what is recited in each claim. To make a noninfringement

36 CHAPTER 4. PATENT DEFENSES FOR FOSS DEVELOPERS

determination, you normally need to show only that there is one limitation of
each independent claim that is not practiced by your software.

Because a dependent claim is, by definition, narrower than the claim from which
it depends, if your software does not infringe a particular claim, it necessarily
cannot infringe any of that claim’s dependent claims. This saves you time in
making the noninfringement determination, because for each claim that you
demonstrate is not infringed, you can ignore the claims that depend from it.

For a claim, such as a method claim, that recites a series of steps, the order
in which the steps are listed is generally irrelevant, unless the claim clearly
indicates otherwise. Ordinarily, then, if a claim recites a method for doing A,
B, and C, you infringe the claim even though you do those steps in reverse
order. Moreover, except in unusual cases, it is not a defense to infringement
of a claim that your software performs additional steps, or includes additional
features, beyond those recited in the claim. Claims typically include verbs like
“comprising” or “including” (often linking the preamble to the recited claim
limitations), and those verbs are conventionally understood to be open-ended,
meaning “including, but not limited to.”

The degree to which the patent claim elements must be read literally in de-
termining infringement varies, depending on circumstances in the prosecution
history of the patent. In some cases, your software would have to implement
each claim element exactly as described in the claim in order to infringe. In
other cases, your implementation need only be “substantially equivalent.” This
depends particularly on whether the patent applicant amended the claims dur-
ing prosecution in order to get around prior art cited by the examiner. Ask your
attorney to examine this issue.

Prepare a Noninfringement Claim Chart

To show that your software does not infringe a patent, it is a good idea to make
a “claim chart” for each independent claim. In a noninfringement claim chart,
the left column displays each element of a claim, while the right column contains
a brief explanation of why your software does not practice that claim element,
if that is the case. For a given claim in your claim chart, you need only explain
that your software does not practice one of the claim elements to establish that
your software does not infringe the entire claim.

4.5. BUILDING DEFENSES 37

4.5.3 Invalidity

Under patent law, in order for a patent to be valid, the claimed invention must
have been useful, reducible to practice, novel, and non-obvious to a “person
having ordinary skill in the art” at the time that the invention was made. An
invalidity defense, therefore, shows that the patent failed to meet one of these
requirements. It is most useful for you to focus on determining whether the
patent claims were not novel, or would have been obvious even though, in a
strict sense, they were novel.

In a litigation context, it is generally more difficult to show that a patent is
invalid than to show that you do not infringe it, because an issued patent is
presumed to be valid. The presumption of validity places the burden of proof
on you as the challenger of the patent. By contrast, patent holders bear the
burden of proof of proving that you infringe the patent. However, as we note
below, if you request re-examination of the patent by the USPTO, and the
request is granted, there is no presumption that the patent is valid during the
re-examination proceeding.

In constructing an invalidity defense, the concept of the priority date of the
patent is important. The priority date is often, but not always, the same date
as the application filing date. In some cases the priority date is earlier, as when
the patent issued from a divisional or continuation of an earlier-filed patent
application, or when the patent is based on the disclosure given in an earlier-
filed “provisional application.” Ask your attorney to determine the priority date
of the patent; it will generally be the earliest filing date mentioned on the first
page of the patent.

Non-novelty

To show that a patent claim is not novel, you must produce a single relevant
prior art reference that describes (“teaches”) each element of the claim. While
the statutory definition of invalidating prior art is somewhat complicated, in
essence the prior art must either predate the priority date of the patent by at
least one year, or predate the invention of the patent. Normally you will not
know the date of the invention, so, if possible, you should use prior art that was
published at least one year before the priority date.

Although other forms of prior art exist, you are best off using earlier patents
(and published patent applications) and other printed publications (textbooks,
journal articles, conference proceedings, technical reports, software manuals,
source code, and so on) that were actually available to the public before the
relevant date. If you are looking for material on the web to use as prior art, it

38 CHAPTER 4. PATENT DEFENSES FOR FOSS DEVELOPERS

is important for you to be able to establish the date of the publication, which
is sometimes difficult for material posted online. If you cannot ascertain that
the date of a particular publication is on or before the relevant date, you should
look for another source of prior art. (It is a good idea for you to establish good
dating practices for your own code and documentation in case you or others
will wish to use them as prior art in a future challenge or defense to a patent.
Use of a revision control system that includes the system date and time on each
operation, as Subversion does, is one way to do this.)

If at all possible, you should use prior art references that were not considered
by the patent examiner during prosecution of the patent. Patents are presumed
valid against any prior art of record. Although the prior art considered by the
examiner is generally listed at the beginning of the patent, you should check the
file wrapper to be sure that your prior art was not already considered.

Obviousness

To show that a claim is not novel, you must produce a single prior art reference
that clearly anticipates each element of that claim. If you need to use two or
more prior art references to cover all the claim elements, your argument must be
that, in light of the prior art, the claimed invention would have been obvious to
to a person having ordinary skill in the art at the time the invention was made.
In essence, you are arguing that the claim is merely an obvious combination of
elements that were already well-known in the relevant technical field. It is more
difficult to demonstrate invalidity based on obviousness than on lack of novelty.

A recent decision of the United States Supreme Court, KSR International
Co. v. Teleflez, Inc.E addressed the appropriate standard for determining ob-
viousness, rejecting a rigid formula that had been applied for many years by
the Court of Appeals for the Federal Circuit (the appellate court having exclu-
sive jurisdiction over appeals concerning patent law, which is generally seen as
having had a pro-patent bias). Although it is too early to know what impact
KSR will have on U.S. patent law, it should now be easier to make success-
ful arguments that a patent claim was obvious over combinations of prior art
references.

Prepare an Invalidity Claim Chart

As with noninfringement determinations, in constructing an invalidity defense
it is helpful to make a claim chart. The first column of the claim chart again
contains each claim element. In the second column, for each claim element,

7550 U.S. __, 127 S. Ct. 1727 (2007).

4.5. BUILDING DEFENSES 39

you summarize the prior art that discloses, and therefore invalidates, that claim
element. Be specific about the page number or (in the case of patents and pub-
lished patent applications) column and line numbers of the prior art reference
you are using.

Unlike noninfringement analysis, however, to prove a patent entirely invalid,
you must show prior art for each element of each claim, including all dependent
claims. If you can only show invalidity for some of the claims, you should
prepare noninfringement determinations for the rest if you can. Invalidation of
one claim will not necessarily help you in invalidating others.

4.5.4 Noninfringement and Invalidity Opinions

In addition to making noninfringement and invalidity determinations, you should
obtain a formal opinion concerning noninfringement and invalidity from a patent
attorney who is familiar with the patent, its file history, the relevant prior art,
and your project. Such opinions of counsel are important under U.S. law be-
cause they reduce the likelihood that an accused infringer will be found to have
committed willful infringement, which can lead to enhanced damages of up to
three times the amount of damages found or assessed.

Ordinarily, damages will not be enhanced if an infringer, having actually learned
of the patent, exercised “due care” by investigating the patent and forming a
good-faith belief that the patent was invalid or not infringed before engaging in
further infringing acts. Obtaining noninfringement and invalidity opinions, and
beginning or continuing activity that might infringe a patent in reliance on such
opinions, are a way of fulfilling this duty of due care.

4.5.5 Unenforceability

With your attorney’s help, you may be able to show that the patent is unen-
forceable in either a strict sense or a practical sense. For example, the patent
might have been invalidated by a court. If the patent is being subjected to a
re-examination by the USPTO, the patent holder as a practical matter gener-
ally has a more difficult time enforcing the patent while the re-examination is
pending.

Moreover, if the patent has expired, it cannot be infringed. While recently-
issued patents expire by default 20 years from the filing date, they can expire
earlier if the patent holder has failed to pay maintenance fees, which are due
every four and a half years. It is estimated that a third of all patents are not
maintained beyond the eleventh year of the term. However, even though the

40 CHAPTER 4. PATENT DEFENSES FOR FOSS DEVELOPERS

patent has expired, if you were infringing the patent before it expired, the patent
holder can seek damages for infringements occurring up to six years in the past.

There may be other grounds for unenforceability. For example, the inventors
and others closely associated with the patent application might have failed to
satisfy their “duty to disclose” to the USPTO all relevant and material prior
art of which they were aware.

4.6 Other Measures

In addition to establishing defenses against assertion of the patent, it may be
worthwhile to take other measures to minimize your risks from a patent. Two
examples are designing around the patent and filing a re-examination.

4.6.1 Designing Around

If it is practical to do so, you may wish to consider ways of “designing around”
the patent claims: changing your code to avoid having it fall within the scope
of the claims. However, the patent holder will still be able to assert that you
infringed the patent prior to implementing the workaround. Designing around
may be impractical, however, if it is too difficult to ascertain the precise meaning
of the claims, or if the claims are relatively broad. (However, the broader a claim
is, the easier it will be to construct an invalidity argument based on prior art.)

4.6.2 Re-examinations

If you have made a strong invalidity determination, you may wish to ask a patent
attorney to help you file a patent re-examination request with the USPTO,
which potentially results in cancellation of the patent claims, although the fil-
ing fees may be out of reach for many nonprofit projects. The USPTO will
grant the request and order re-examination of the patent if it considers your
request to raise a “substantial new question of patentability” regarding the
patent claims. The request must be based on prior art in the form of patents
or printed publications; other forms of prior art cannot be used. If the USPTO
orders re-examination, prosecution of the patent begins all over again for the
patent holder. In a re-examination, the patent claims lose their presumption of
validity.

The most common form of re-examination is ex parte re-examination, in which

4.7. SHOULD FOSS DEVELOPERS APPLY FOR PATENTS? 41

a third party requester whose request is granted has no further opportunity to
make submissions in the proceeding, apart from the right to submit a reply if
the patent owner files a response to the order granting the request. The current
fee for filing a request for ex parte re-examination is $2520. A much more
expensive form of re-examination, inter partes re-examination, is also available
for more recently-granted patents; the current fee is $8800. It offers the requester
opportunities to submit arguments during the course of the re-examination,
though it has certain drawbacks in addition to its higher fee.

Re-examinations are usually successful at least in causing the patent holder to
narrow the patent claims. It may then become marginally easier for you to
make a noninfringement determination for those claims, or to design around
those claims. On the other hand, re-examination carries some risk that the
patent claims will survive unscathed. In that case, the patent emerges with
an even stronger presumption of validity, because it has withstood a challenge
based on additional prior art.

4.7 Should FOSS Developers Apply for Patents?

While hostility towards software-related patents is especially prevalent through-
out the FOSS community, FOSS developers occasionally ask whether they should
apply for their own patents to defend themselves and their projects against
patents held by others. Usually this will not be advisable, for several reasons.
The costs of applying for and maintaining a competently-drafted patent may be
out of reach for an individual developer or nonprofit FOSS project. Moreover, a
FOSS project whose developers file for and obtain patents may suffer consider-
able political damage within the FOSS community, given prevailing community
attitudes towards software-related patents. Two other reasons, however, are
even more significant.

First, the novelty requirement for patentability is fundamentally in tension with
the nature of FOSS development. FOSS development is done in a collaborative,
distributed and public fashion. If an invention arises out of such FOSS devel-
opment activity, the inventors would have to act very quickly to file a patent
application, since otherwise relevant public code, documentation and discussions
would eventually (or immediately, in most countries outside the U.S.) constitute
prior art to the invention, rendering it unpatentable for non-novelty.

Second, merely owning a few patents will not provide an effective defensive coun-
terweight to a hostile competitor that holds hundreds or thousands of patents.
It will also be entirely ineffective against so-called patent trolls. Patent trolls
are companies that acquire, sue on and license patents but do not produce any
products that might infringe others’ patents.

Chapter 5

Common Trademark Issues

Like other products, FOSS applications develop reputations over time as users
come to associate an application’s name with a particular standard of quality
or set of features. Trademark law can help protect this relationship of trust and
reliance that a project develops with its users; it allows the project to maintain a
certain amount of control over the use of its brand. This document is intended
to explain how FOSS developers can make effective use of their trademarks.
However, because we do not know the specifics of your project, this document
provides general information and not legal advice. If your FOSS project has a
specific need for legal advice, please contact the Software Freedom Law Center
or seek other legal counsel.

5.1 Choosing a Mark

The purpose of a trademark is to identify the source of a product. FOSS projects
often use their names or logos to indicate that a particular distribution, module,
or upgrade is an official release of the project. In order to make such indica-
tions meaningful, trademark law enables a trademark’s owner to prevent others
from using the mark in ways likely to cause confusion among potential users
of the software. Because the law only protects a mark insofar as it serves this
identifying function, the most important quality of a good trademark is distinc-
tiveness. A name, logo, or phrase that does not distinguish your program from
other products with substantial similarities is unlikely to be afforded trademark
protection. For this reason, generic marks consisting of common words that
describe the project (e.g., a music player called “Music Player”) are generally
poor choices.

43

http://www.softwarefreedom.org/contact.html

44 CHAPTER 5. COMMON TRADEMARK ISSUES

The “strongest” marks (those afforded the most protection under trademark
law) are those which have no other associations, such as a made-up word or an
abstract design. Such marks are the least likely to cause consumer confusior[]
because their only meaning is to identify the product. However, these marks
might be undesirable from a marketing perspective, even though it is a strong
mark from a legal perspective. Often a project will want its mark to say some-
thing about the product’s purpose. A project need not avoid descriptive marks
entirely, but should avoid marks that consist largely of words and images that
are generic to the industry or are very similar to those already used to identify
similar products.

If two entities are using the same mark on similar goods (such as two software
applications), the law favors the one who used it first. Therefore, in stark
contrast to patents (see Chapter]), FOSS developers should perform a thorough
search before choosing a mark; it behooves a FOSS project to be as certain
as possible their chosen mark is not already in use. The best search is one
performed by an experienced trademark specialist, largely because she knows
where to look. However, resources are also available for those who wish to
search on their own. The U.S. Patent and Trademark Office (USPTO) provides
the Trademark Electronic Search System (TESS), which allows users to freely
search the USPTO’s database of registered trademarks. A search of registered
trademarks is not enough, however, since U.S. law also provides some trademark
protection in the absence of registration. Consequently, you should also perform
a thorough web search to determine whether anyone is using that unregistered
mark.

5.2 Registered v. Unregistered Marks

Though unregistered marks have some legal protections (called “common law”
rights), they are limited to those geographical areas where consumers actually
identify the trademark with its source. Traditionally, a mark’s geographic reach
is defined by criteria such as where the product is sold and where it can be found
in brick and mortar stores. Such metrics apply poorly to products which are
only (or primarily) distributed online, and consequently their geographic reach
for the purposes of unregistered trademarks is generally uncertain.

You can minimize this uncertainty by registering your trademark with either a
state or the federal government. Registration grants much stronger protections
for your trademark if someone else uses the mark in connection with goods
similar to the ones described in your registration application. Registration with
a state government grants these protections within the state, while registration

1 “Consumer confusion” is an important test regarding trademark similarity used by the
USPTO.

http://tess2.uspto.gov/

5.3. THE FEDERAL REGISTRATION PROCESS 45

with the federal government grants them throughout the nation.

The protections conferred through registration are not absolute. If someone
establishes that they were using the mark before you, their rights to the use of
their unregistered mark will still apply. A thorough search prior to registration
can help you avoid this situation and any resulting territorial conflict.

For the vast majority of FOSS projects, especially those distributed on the web,
federal registration is preferable and sufficient. Though federal registration fees
are significantly higher — $275 per mark per goods classification for a federal
mark versus an average of $50 for state registration — distribution is rarely or
never limited to a particular state. In addition to broader applicability, federally
registered trademarks can be enforced in federal courts, and provide a better
position from which to register and enforce trademarks internationally.

5.3 The Federal Registration Process

The USPTO’s trademark registration process is relatively simple. You do not
need a lawyer, and the entire process can be done online (in fact, online regis-
tration is strongly preferred; the USPTO charges an additional $100 for paper
filing).

Most of the registration requirements are straightforward — a jpeg image of the
mark, the date you first used the mark, etc. In addition to this basic information,
the application requires that you provide a “specimen” demonstrating your use
of the mark in association with a product. For a software product, the specimen
can be:

e A picture of the software’s physical packaging bearing the mark, if the
product has been distributed physically;

e A screenshot of a webpage displaying both the mark and a download link;
e An advertisement for the product; or

e Any other image which demonstrates “the overall context” of how you
have used the mark in association with the product.

The specimen requirement only applies if you are currently using the mark. You
may also register a trademark based on an intent to use the mark in commerce
within six months of registration.

Next, you should make sure that your project fits within one of the descriptions
in the USPTO’s |Acceptable Identification of Goods & Services manual. This

http://www.uspto.gov/web/offices/ac/qs/ope/fee2006may15.htm#tm
http://tess2.uspto.gov/netahtml/tidm.html

46 CHAPTER 5. COMMON TRADEMARK ISSUES

manual classifies goods first by a general international goods class, and then by
a more specific identification within that class. There are 34 goods classes, but
most FOSS projects will be concerned exclusively with class 9, which applies
broadly to computing goods. While some projects will relate to other classes
(e.g. games, or software intended for use in the medical industry), even for these
projects it is generally sufficient to register only in class 9.

If upon searching the identification manual you are not able to find an iden-
tification that applies to your project, you must request that an applicable
identification be added to the manual before you can register. You may find
several applicable identifications within class 9, as many are quite broad. Make
note of all of them so as to make your application as comprehensive as possible;
though you must pay a registration fee for each class within which you register
a mark, you may select several identifications within a class without paying an
additional fee.

After you have all of the above information, you should be able to complete
the application without any problem. In order to file the (less expensive) online
application, you must pay when you apply, either with a credit card or by setting
up a deposit account with the USPTO prior to filing.

5.4 Using Your Mark

If a mark is no longer useful to distinguish one source of goods from another, it
can lose its trademark protection, regardless of registration. This can happen
either through abandonment or genericide. Abandonment occurs if the trade-
mark holder stops using the mark for an extended period of time (usually over
three years), or fails to monitor or control how the mark is used. Genericide
generally occurs when the trademark comes to be used by consumers to refer to
a general class of goods, rather than to the trademark holder’s particular prod-
uct, and the trademark holder does not take sufficient action to prevent such
generic use of the mark. By observing the following “best practices” guidelines
when using or licensing their marks, most projects should be able to easily avoid
abandonment and genericide concerns.

5.4.1 Proper Use of Your Own Mark

When you use your trademark (e.g. on your website, packaging, documentation,
advertising, and other materials), provide notice of your claim to the mark. If
you have not registered your mark, you may use the “™ symbol to assert your
common law rights. If your mark is registered, use the “®)” symbol, “Registered,

http://www.uspto.gov/go/tac/doc/basic/international.htm
http://teasplus.uspto.gov/TeasPlus/index.jsp
http://www.uspto.gov/web/offices/ac/comp/fin/depacc.htm

5.4. USING YOUR MARK 47

U.S. Patent and Trademark Office,” or “Reg. U.S. Pat. & Tm. Off.”

Also, use your trademark in a consistent and distinctive manner. Set it apart
from other text by using capitalized, italic, boldfaced, colored, or otherwise
stylized text. Always use registered marks in the same form which appears in
the registration application; do not pluralize singular marks.

Using a project’s name in place of its function or general class increases the risk
that the name will become generic and thus unprotected. A common example
of this is “Aspirin”; formerly a trademark of Bayer, the name was used so
frequently as a noun in place of “acetylsalicylic acid” that it became generic in
the United States. Because software is functional by nature, there is a particular
tendency for users to substitute a program’s name for the function it performs
(i.e., to use the mark as a verb, as in “grep”). You should avoid using your
mark this way.

5.4.2 Others’ Use of Your Mark

Trademark holders have the right to prevent the unauthorized use of their marks
(or similar imitative designs) when such marks are used in commerce and are
used in a manner that is likely to cause confusion or to deceive. Non-commercial
use, such as in journalism or literature, is usually permissible. Even in connec-
tion with commercial goods and services, it is generally permissible for others
to use your trademark in a manner that does not imply an official relationship
or sponsorship (e.g., to indicate compatibility), to compare its software with
yours, or to indicate that it sells or implements your software.

If you believe that someone is using your mark in a manner protected by your
exclusive rights and has not obtained your authorization to do so, you should
take action even if you do not object to their use. If you do not object, you should
enter into an explicit license agreement with the other party, clearly defining the
parameters of their use. It is particularly important to address in the license the
quality of product to which your mark may be affixed. You may specify specific
quality standards regarding testing, performance, compatibility, and the like.
Alternatively, or additionally, you may explicitly retain the right to approve or
veto individual uses of the mark. In practice, you should exercise your right to
control use of the mark such that the reputation your users associate with your
product is effectively upheld by your licensees.

If you disapprove of someone’s unlicensed use which infringes upon your exclu-
sive rights, you should send a polite email to the infringer notifying them of
your claim to the mark, and that their use is unacceptable. You might sug-
gest a licensing arrangement, contingent on some changes in their usage of the
mark. If you believe such an arrangement is impossible, ask the violator to fix

48 CHAPTER 5. COMMON TRADEMARK ISSUES

the problem. Be polite but firm. It is often the case that license violations are
inadvertent and easily fixed. Offer to help the violator take whatever steps are
needed to achieve compliance, and avoid threats of publicity and lawsuits for as
long as possible. Make sure the violator understands that your primary concern
is the project’s reputation, not a large financial settlement. Once you convince
them of that point, they are likely to respond more positively even if they were
initially unresponsive.

As described above, a trademark’s legal protections can be lost if it becomes
generic in the minds of the public. However, genericide occurs infrequently, and
is a greater danger to very famous marks, simply because more widespread use
gives rise to a greater possibility of widespread misuse. Furthermore, a trade-
mark owner has no right to enjoin generic use where it is most common — in
non-commercial communications amongst the public. Some trademark holders
attempt to fight genericide by taking out advertisements clarifying proper use
of their mark, but most FOSS projects do not have the finances for such a cam-
paign. Instead, if you are concerned about genericide, you might post guidelines
for proper use of your mark on your website. If you notice that someone is using
the mark generically, you can point them to these guidelines and politely request
that they help you protect your mark by using it properly. However, you have no
legal right to stop non-commercial and non-confusing generic use, so demands
and legal threats are particularly inappropriate in these communications.

5.5 An example: Project Foo and FooNews

A typical situation for a successful project is that websites spring up to serve
the needs of the project’s community. This is usually a welcome development,
but it does often raise trademark concerns. Here we look at FooNews, a new
website devoted to the latest developments in the Project Foo community. Such
a website raises a few questions:

e Does the website need permission from the project to call itself “FooNews”?

e In what circumstances would a project want to stop such use of its trade-
mark?

e How does a project give or deny permission to use their mark?

5.5.1 Is permission needed?

Most people, upon visiting a site called FooNews and seeing it report exclusively
on news about Project Foo, would be quite likely to assume the site is owned

5.5. AN EXAMPLE: PROJECT FOO AND FOONEWS 49

and controlled by Project Foo. It’s a reasonable mistake as to the source of
the website, and it is precisely this kind of mistake that trademark law aims
to prevent. The way the law accomplishes this is to give the trademark holder
the power to decide who may use the trademark and who may not. In virtually
all cases of the kind described here, the trademark holder does indeed have
the power to stop websites from using the mark for the purpose of preventing
confusion as to the source of the website.

There are, however, other ways to prevent this confusion in the website’s readers.
The site could, for example, provide conspicuous disclaimers alerting readers to
the fact that the site is operated by entirely different people than the project,
that the views expressed and claims made by the site are not those of Project
Foo or the people who work on Project Foo. If these disclaimers are conspicuous
and definitive enough, that might remove the confusion and allow the site to
use the trademark without the project’s permission. Still, to avoid any doubts,
it’s best for both the project and the website to reach an agreement as to what
use is permissible.

5.5.2 When to allow use

Way down in the roots of Software Freedom are the same ideas from which the
belief in free speech derives. FOSS projects are not often built by people who
value censorship, and there is a strong belief within most FOSS communities
that projects should thrive on their merits, and not use legal weapons to si-
lence critics and competitors. It is for this reason that in many cases, projects
will encourage use of their name even when commercial, proprietary software-
producers would forbid it.

The case of Project Foo and FooNews is no different. Although Project Foo can
often stop a website like FooNews, it usually has no reason to do so. Calling
the site “FooNews” is an excellent way to communicate to readers what the site
is about, and Project Foo usually wants people to be able to find information
about them. FOSS projects are built by nurturing community, not by using
trademark law to crush it.

Sometimes, a project’s community can be mean-spirited or critical of the project.
Even then, if criticism is offered in good faith, a website like FooNews devoted
to pointing out flaws in Project Foo might be useful. In any event, trademark
enforcement against people who criticize a project will just engender more crit-
icism. We encourage projects to encourage community-based websites related
to the project, even when those websites contain criticism of the project.

The time to become concerned is when people want to use a trademark for
purposes that don’t further the project’s goals. If people trade on your good

50 CHAPTER 5. COMMON TRADEMARK ISSUES

reputation to sell services that devalue or compete with your project (for ex-
ample, by implying you endorse their products), it would be foolish not to do
something about it.

Every project has different goals and every project’s community is going to have
a different idea of what is acceptable use of the project’s name. Whatever action
you decide to take with regard to the project’s name, make sure your community
understands the reasons why you make the decisions you do. If there is a lot of
objection to your policies, you might want to examine them and see if there are
ways to allow use while still protecting the project’s name.

5.6 Trademark Policy

The default trademark rules are sufficient for most Software Freedom projects
and most projects do not actually need a trademark policy. Sometimes, though,
there is confusion in a project’s community of developers and users as to what
constitutes legal or acceptable use of the project’s name or logo.

Most of the time, a project wants to encourage activity related to the project.
When websites spring up that are devoted to supporting a project’s users, pro-
viding related software and services, and discussing news about the project, that
is a good sign that the project is successful and having a wide impact.

Here is a sample trademark policy that Project Foo could use to communicate
some simple guidelines to its community about using their name and logo. You
can adjust it to suit the needs of your project.

We at Project Foo love it when people talk about Project Foo, build
businesses around Project Foo and produce products that make life
better for Project Foo users and developers. We do, however, have
a trademark, which we are obliged to protect. The trademark gives
us the exclusive right to use the term to promote websites, services,
businesses and products. Although those rights are exclusively ours,
we are happy to give people permission to use the term under most
circumstances.

The following is a general policy that tells you when you can re-
fer to the Project Foo name and logo without need of any specific
permission from Project Foo:

First, you must make clear that you are not Project Foo and that
you do not represent Project Foo. A simple disclaimer on your home
page is an excellent way of doing that.

5.7. FORKING A PROJECT 51

Second, you may not incorporate the Project Foo name or logo into
the name or logo of your website, product, business or service.

Third, you may use the Project Foo name (but not the Project
Foo logo) only in descriptions of your website, product, business or
service to provide accurate information to the public about yourself.

Fourth, you may not use the Project Foo graphical logo.

If you would like to use the Project Foo name or logo for any other
use, please contact us and we’ll discuss a way to make that happen.
We don’t have strong objections to people using the name for their
websites and businesses, but we do need the chance to review such
use. Generally, we approve your use if you agree to a few things,
mainly: (1) our rights to the Project Foo trademark are valid and
superior to yours and (2) you’ll take appropriate steps to make sure
people don’t confuse your website for ours. In other words, it’s not
a big deal, and a short conversation (usually done via email) should
clear everything up in short order.

If you currently have a website that is using the Project Foo name
and you have not gotten permission from us, don’t panic. Let us
know, and we’ll work it out, as described above.

5.7 Forking a Project

When a project forks, it may be desirable for the forked project to continue
using the original project’s marks in some form. In many situations, this is
entirely consistent with the purpose of trademarks. If the fork is initiated by
existing project members, it is appropriate for the fork to associate itself with
the goodwill and reputation of those members who helped develop and promote
the original project’s marks. Often, common sense or convention supports such
use; for example, a fork aimed at creating a mobile version of Project N might
call itself “Project N Mobile.” On the other hand, the original project may also
have legitimate concerns that a fork’s use of the mark will cause confusion or
unwanted associations in the minds of users.

In order to balance the interests of the projects and minimize conflict, the
leadership of the original and forking projects should, before the fork occurs,
negotiate an agreement concerning the latter’s use of the former’s marks. The
agreement might provide, for example, that the name of the original project may
be incorporated within the fork’s name, but may not be used independently to
refer to the fork; or that the original project’s graphical logo may only be used
if it is sufficiently modified so that it clearly refers only to the fork.

Unfortunately, forking does not always occur under circumstances conducive to

52 CHAPTER 5. COMMON TRADEMARK ISSUES

amicable negotiation. In order to avoid negotiating terms amidst the ill will
generated by a “bad breakup,” we advise projects to decide on terms outlining
acceptable use of trademarks by project forks before a fork is even contemplated,
and to place these terms in a membership agreement or policy statement. A
membership agreement, of course, would not apply to non-members who seek
to fork the project.

5.8 Responding to Cease-And-Desist Letters

Cease-and-desist (or “demand”) letters are often the first contact a company
will make with someone it believes has infringed its trademark rights. They will
typically describe the offending behavior and the applicable laws and penalties,
and will demand some action on the part of the recipient (such as removing
offending content from a website or product). Often these letters take a threat-
ening tone that can be very intimidating, particularly to recipients who have
neither the legal knowledge to evaluate the claims nor the resources to hire a
lawyer.

When FOSS developers receive such cease-and-desist letters, it usually is be-
cause they have developed some software that replaces an existing proprietary
product, and they have chosen a name that closely resembles the mark of that
well-known proprietary application. To avoid the likelihood that this will hap-
pen to your project, follow the advice in §[5.1]to make your best effort to chose
a name that does not resemble existing marks already in use

If you nevertheless receive a cease-and-desist letter, do not take for granted
that its tone reflects the strength of the sender’s legal position; the purpose of
these letters is generally to inspire compliance with minimal effort, and some-
times scare tactics are effective to this end. Instead, respond reasonably. If the
claims in the letter are unclear, ask for more information. Precisely what about
your use is objectionable? What statute does the company believe you have
violated? If after gathering this information, you are uncertain whether your
use is infringing, contact the [Software Freedom Law Center or seek other legal
counsel.

Copyright (©) 2006, 2007, 2008, Software Freedom Law Center, Inc. Verbatim
copying and distribution of this entire document is permitted in any medium;
this notice must be preserved on all copies.

21t turns out that classic FOSS “hacker wordplay” names like “GNU” are actually an
excellent way to avoid possible trademark infringement claims. Since “GNU” itself does not
resemble the word “Unix” at all, and since when expanded it explicitly tells the reader that
the product is not Unix (i.e., “Gnu’s Not Unix”), a potential trademark holder on the term
“Unix” would be hard pressed to make the case that consumers would be confused and think
that GNU really is Unix.

http://www.softwarefreedom.org

	Foreword
	Introduction
	Common Copyright Questions
	Copyleft
	Choosing A FOSS License
	The GNU General Public License
	BSD-Style or Permissive Licenses
	The GNU Lesser General Public License
	The GNU Affero General Public License

	Copyright Assignment and Unification
	Copyright for Documentation, Websites and Supporting Material
	Copyright Enforcement
	Gather the facts
	Familiarize yourself with the license
	Contact other copyright holders
	Ask the violator to fix the problem

	Copyright Registration

	Common Organizational Issues
	Corporate Form
	Unincorporated Associations
	Nonprofit Corporations
	Umbrella Organizations and Fiscal Sponsors

	 Incorporation
	Where to Incorporate
	Choosing a Name
	Formation Documents

	Governance
	Bookkeeping
	Tax Exemption Recognition
	Restricted Activities
	Public Support Test
	Related and Unrelated Business Income

	Filings

	Patent Defenses for FOSS Developers
	Structure of a Patent
	Claims
	File Wrapper

	Patent Infringement
	Becoming Aware of a Patent
	Understanding the Claims
	Building Defenses
	License
	Noninfringement
	Invalidity
	Noninfringement and Invalidity Opinions
	Unenforceability

	Other Measures
	Designing Around
	Re-examinations

	Should FOSS Developers Apply for Patents?

	Common Trademark Issues
	Choosing a Mark
	Registered v. Unregistered Marks
	The Federal Registration Process
	Using Your Mark
	Proper Use of Your Own Mark
	Others' Use of Your Mark

	An example: Project Foo and FooNews
	Is permission needed?
	When to allow use

	Trademark Policy
	Forking a Project
	Responding to Cease-And-Desist Letters

